POJ 3526 组合数 + 高斯消元

题意

传送门 POJ 3526

题解

对于 F ( X ) = a d X d + a d − 1 X d − 1 + ⋯ + a 1 X + a 0 F(X)=a_{d}X^{d} + a_{d−1}X^{d−1} + ⋯ + a_1X + a_0 F(X)=adXd+ad1Xd1++a1X+a0,已知 a d = 1 a_{d}=1 ad=1,则未知数为 a d − 1 , a d − 2 , ⋯ , a 0 a_{d-1},a_{d-2},⋯,a_{0} ad1,ad2,,a0。考虑到 a , b a,b a,b 是不同素数,则对于解 α + β   ( α = a m , β = b n ) \alpha+\beta\ (\alpha=\sqrt[m]{a},\beta=\sqrt[n] b) α+β (α=ma ,β=nb ),只用考虑 α \alpha α 指数模 m m m 以及 β \beta β 指数模 n n n 的情况,共 n × m n\times m n×m 种,方程右边系数为 0 0 0

对于每一个指数项

X i = ∑ C i j α j β i − j X^{i}=\sum C_{i}^{j} \alpha^{j} \beta^{i-j} Xi=Cijαjβij

组合数打表,联立关于 a d − 1 , a d − 2 , ⋯ , a 0 a_{d-1},a_{d-2},⋯,a_{0} ad1,ad2,,a0 m × n m\times n m×n 元线性方程组

{ ∑ ( i − j ) % n × m + j % m = 0 a i C i j a j / m b ( i − j ) / n = 0 … ∑ ( i − j ) % n × m + j % m = d − 1 a i C i j a j / m b ( i − j ) / n = 0 \begin{cases} \sum_{(i-j)\%n\times m+j\%m=0} a_{i}C_{i}^{j}a^{j/m}b^{(i-j)/n}=0\\ \dots\\ \sum_{(i-j)\%n\times m+j\%m=d-1} a_{i}C_{i}^{j}a^{j/m}b^{(i-j)/n}=0\\ \end{cases} (ij)%n×m+j%m=0aiCijaj/mb(ij)/n=0(ij)%n×m+j%m=d1aiCijaj/mb(ij)/n=0

其中 a d = 1 a_d=1 ad=1,方程中为常数项;高斯消元求解,四舍五入答案即可。

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <vector>
#define min(a, b) (((a) < (b)) ? (a) : (b))
#define max(a, b) (((a) > (b)) ? (a) : (b))
#define abs(x) ((x) < 0 ? -(x) : (x))
#define INF 0x3f3f3f3f3f3f3f3f
#define delta 0.85
using namespace std;

#define maxn 25
typedef long long ll;
const double EPS = 1e-8;
int a, m, b, n;
ll C[maxn][maxn];

typedef vector<double> vec;
typedef vector<vec> mat;
// Ax = b
vec gauss_jordan(const mat &A, const vec &b)
{
    int n = A.size();
    mat B(n, vec(n + 1));
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
        {
            B[i][j] = A[i][j];
        }
    }
    for (int i = 0; i < n; i++)
    {
        B[i][n] = b[i];
    }
    for (int i = 0; i < n; i++)
    {
        int pivot = i;
        for (int j = i; j < n; j++)
        {
            if (abs(B[j][i]) > abs(B[pivot][i]))
            {
                pivot = j;
            }
        }
        swap(B[i], B[pivot]);
        if (abs(B[i][i]) < EPS)
            return vec();
        for (int j = i + 1; j <= n; j++)
        {
            B[i][j] /= B[i][i];
        }
        for (int j = 0; j < n; j++)
        {
            if (i != j)
            {
                for (int k = i + 1; k <= n; k++)
                    B[j][k] -= B[j][i] * B[i][k];
            }
        }
    }
    vec x(n);
    for (int i = 0; i < n; i++)
        x[i] = B[i][n];
    return x;
}
// 组合数打表
void init()
{
    for (int i = 0; i < maxn; i++)
        C[i][0] = 1;
    for (int i = 1; i < maxn; i++)
    {
        for (int j = 1; j < maxn; j++)
        {
            C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
        }
    }
}
// 快速幂
ll qpow(ll x, ll n)
{
    ll res = 1;
    while (n > 0)
    {
        if (n & 1)
            res *= x;
        x *= x;
        n >>= 1;
    }
    return res;
}
//四舍五入
double round(double x)
{
	return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5);
}

void solve()
{
    int d = m * n;
    mat A(d, vec(d, 0));
    vec B(d, 0);
    for (int i = 0; i <= d; i++)
    {
        for (int j = 0; j <= i; j++)
        {
            ll fa = j, fb = i - j;
            ll x = fb % n * m + fa % m, y = i, z = C[i][j] * qpow(a, fa / m) * qpow(b, fb / n);
            if (i == d)
            {
                B[x] -= z;
            }
            else
            {
                A[x][y] += z;
            }
        }
    }
    vec res = gauss_jordan(A, B);
    printf("1 ");
    for (int i = d - 1; i >= 0; i--)
        printf("%d%c", int(round(res[i])), i == 0 ? '\n' : ' ');
}

int main()
{
    init();
    while (~scanf("%d%d%d%d", &a, &m, &b, &n) && (a | m | b | n))
    {
        solve();
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值