P3118 [USACO15JAN] 状压 DP + BFS

58 篇文章 0 订阅
题意

传送门 P3118 [USACO15JAN]Moovie Mooving

题解

爆搜至少 O ( N ! ) O(N!) O(N!),考虑状态压缩 D P DP DP d p [ i ] dp[i] dp[i] 代表集合 i i i 中电影全部的排列能达到的最大 t t t,使 [ 0 , t ] [0,t] [0,t] 都被电影覆盖。
d p [ i ∣ 1 < < j ] = m a x 0 ≤ j < N 且 i > > j & 1 = 0 { d p [ i ∣ 1 < < j ] , u p p e r _ b o u n d ( d p [ i ] ) + D [ j ] } dp[i|1<<j]=max_{0\leq j<N且i>>j\&1=0}\{dp[i|1<<j],upper\_bound(dp[i])+D[j]\} dp[i1<<j]=max0j<Ni>>j&1=0{dp[i1<<j],upper_bound(dp[i])+D[j]} 答案为满足 d p [ i ] ≥ L dp[i]\geq L dp[i]L 的电影数最小的 i i i,那么照拓扑 D P DP DP 的做法 B F S BFS BFS 求解即可。

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
#define inf 0x3f3f3f3f
#define maxn 20
#define maxc 1000
int N, L, D[maxn], C[maxn], B[maxn][maxc];
int cnt[1 << maxn], deg[1 << maxn], dp[1 << maxn];

int main()
{
    scanf("%d%d", &N, &L);
    for (int i = 0; i < N; i++)
    {
        scanf("%d%d", D + i, C + i);
        for (int j = 0; j < C[i]; j++)
        {
            scanf("%d", B[i] + j);
        }
    }
    int n = 1 << N;
    for (int i = 1; i < n; i++)
    {
        deg[i] = cnt[i] = cnt[i >> 1] + (i & 1);
    }
    queue<int> q;
    q.push(0);
    int res = -1;
    while (!q.empty())
    {
        int s = q.front();
        q.pop();
        if (dp[s] >= L)
        {
            res = cnt[s];
            break;
        }
        for (int i = 0; i < N; i++)
        {
            if (!(s >> i & 1))
            {
                int nxt = s | 1 << i, j = upper_bound(B[i], B[i] + C[i], dp[s]) - B[i] - 1;
                dp[nxt] = max(dp[nxt], D[i] + (j == -1 ? -inf : B[i][j]));
                if (--deg[nxt] == 0)
                {
                    q.push(nxt);
                }
            }
        }
    }
    printf("%d\n", res);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值