P3834 主席树

该博客介绍了一种利用主席树(Segment Tree)解决区间查询优化问题的方法。通过压缩数据并利用未更新节点的区间和为0的特性,简化了建树过程。在O(n log n)的时间复杂度内完成数组压缩,并在O(log n)时间内进行区间更新和查询操作。文章通过一个具体的竞赛题目实例展示了如何应用主席树来高效地处理动态区间和查询。
摘要由CSDN通过智能技术生成
题意

传送门 P3834

题解

主席树裸题,考虑到未更新的节点代表的区间和为 0 0 0,可以省去建树这一步,用初始根节点的值映射未更新节点的值。

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
#define maxn 200005
#define tree_size 4000005
int N, M, cnt, A[maxn], B[maxn], rt[maxn];
int sum[tree_size], cl[tree_size], cr[tree_size];

int compress()
{
    for (int i = 0; i < N; ++i)
        B[i] = A[i];
    sort(B, B + N);
    int n = unique(B, B + N) - B;
    for (int i = 0; i < N; ++i)
        A[i] = lower_bound(B, B + n, A[i]) - B;
    return n;
}

int update(int pre, int x, int l, int r)
{
    int cur = ++cnt;
    cl[cur] = cl[pre], cr[cur] = cr[pre], sum[cur] = sum[pre] + 1;
    if (r - l > 1)
    {
        int m = (l + r) >> 1;
        x < m ? cl[cur] = update(cl[pre], x, l, m) : cr[cur] = update(cr[pre], x, m, r);
    }
    return cur;
}

int query(int u, int v, int k, int l, int r)
{
    if (r - l == 1)
        return l;
    int x = sum[cl[v]] - sum[cl[u]], m = (l + r) >> 1;
    return k <= x ? query(cl[u], cl[v], k, l, m) : query(cr[u], cr[v], k - x, m, r);
}

int main()
{
    scanf("%d%d", &N, &M);
    for (int i = 0; i < N; ++i)
        scanf("%d", A + i);
    int n = compress();
    for (int i = 0; i < N; ++i)
        rt[i + 1] = update(rt[i], A[i], 0, n);
    while (M--)
    {
        int l, r, k;
        scanf("%d%d%d", &l, &r, &k);
        printf("%d\n", B[query(rt[l - 1], rt[r], k, 0, n)]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值