Codeforces Round #680 (Div. 2)

传送门

传送门 Codeforces Round #680 (Div. 2)

A

m a p map map 维护 b i b_i bi,遍历 a i a_i ai 每次贪心地选取不大于 x − a i x-a_i xai 的最大值。

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <map>
using namespace std;
#define maxn 55

int main()
{
    int t, n, x, a[maxn];
    scanf("%d", &t);
    while (t--)
    {
        map<int, int> mp;
        scanf("%d%d", &n, &x);
        for (int i = 0; i < n; ++i)
            scanf("%d", a + i);
        for (int i = 0; i < n; ++i)
        {
            int b;
            scanf("%d", &b);
            ++mp[b];
        }
        bool f = 1;
        for (int i = 0; i < n; ++i)
        {
            auto it = mp.upper_bound(x - a[i]);
            if (it == mp.begin())
            {
                f = 0;
                break;
            }
            --it;
            if (--(it->second) == 0)
                mp.erase(it);
        }
        puts(f ? "Yes" : "No");
    }
    return 0;
}
B

至少存在 100 100 100 个选手总分 s c o r e ≥ a + b score\geq a+b scorea+b,且至少存在 100 100 100 个选手总分 s c o r e ≥ c + d score\geq c+d scorec+d,故答案为 m i n ( a + b , c + d ) min(a+b,c+d) min(a+b,c+d)

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;

int main()
{
    int t, a, b, c, d;
    scanf("%d", &t);
    while (t--)
    {
        scanf("%d%d%d%d", &a, &b, &c, &d);
        printf("%d\n", max(a + b, c + d));
    }
    return 0;
}
C

p   m o d   q ≠ 0 p\ mod\ q\neq 0 p mod q=0,则答案为 p p p。否则, q q q 可整除 p p p,此时,求 p p p 满足 x   m o d   q ≠ 0 x\ mod\ q\neq 0 x mod q=0 的最大约数 x x x,若枚举 p p p 的约数 O ( p ) O(\sqrt{p}) O(p ),复杂度过高;考虑枚举 q q q 的约数,约数 d d d 满足 d ∣ q d|q dq,则有 d ∣ p d|p dp,那么不断从 p p p 中约去 d d d,当 d ≠ 1 d\neq 1 d=1 时则有 p / d k   m o d   q ≠ 0 p/d^k\ mod\ q \neq0 p/dk mod q=0,对满足条件的情况更新答案。

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;

int main()
{
    int t;
    scanf("%d", &t);
    while (t--)
    {
        ll p, q, res = 0;
        scanf("%lld%lld", &p, &q);
        if (p % q != 0)
            res = p;
        else
        {
            for (int i = 1; i * i <= q; ++i)
            {
                if (q % i == 0)
                {
                    int j = q / i;
                    ll t1 = p / i, t2 = p / j;
                    while (i > 1 && t1 % q == 0)
                        t1 /= i;
                    if (t1 % q != 0)
                        res = max(res, t1);
                    while (j > 1 && t2 % q == 0)
                        t2 /= j;
                    if (t2 % q != 0)
                        res = max(res, t2);
                }
            }
        }
        printf("%lld\n", res);
    }
    return 0;
}
D 补题

a i a_i ai 升序排序后将 [ 0 , n ) [0,n) [0,n) 的元素划分为集合 S S S,将 [ n , 2 n ) [n,2n) [n,2n) 的元素划分为集合 T T T,则对于题中的任一划分 p , q p,q p,q 都有 x i ∈ S , y i ∈ T x_i\in S,y_i \in T xiS,yiT x i ∈ T , y i ∈ S x_i \in T, y_i\in S xiT,yiS,则答案为 C 2 n n × ( s u m { T } − s u m { S } ) C_{2n}^{n}\times (sum\{T\}-sum\{S\}) C2nn×(sum{T}sum{S})

反证法,假设 x i ∈ S x_i \in S xiS y i ∈ S y_i\in S yiS 则有 [ x 0 , x i ] ∈ S [x_0,x_i]\in S [x0,xi]S [ y i , y n − 1 ] ∈ S [y_i,y_{n-1}]\in S [yi,yn1]S,而 S S S 的元素个数为 n n n

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
#define maxn 150005
typedef long long ll;
const int mod = 998244353;
int N, A[maxn << 1];
ll f[maxn << 1], v[maxn << 1], vf[maxn << 1];

int main()
{
    scanf("%d", &N);
    int n = N << 1;
    for (int i = 0; i < n; ++i)
        scanf("%d", A + i);
    sort(A, A + n);
    ll dif = 0;
    for (int i = 0; i < N; ++i)
        dif -= A[i];
    for (int i = N; i < n; ++i)
        dif += A[i];
    dif %= mod;
    f[1] = 1, v[1] = 1, vf[1] = 1;
    for (int i = 2; i <= n; ++i)
    {
        f[i] = f[i - 1] * i % mod;
        v[i] = (mod - mod / i) * v[mod % i] % mod;
        vf[i] = vf[i - 1] * v[i] % mod;
    }
    printf("%lld\n", dif * f[n] % mod * vf[N] % mod * vf[N] % mod);
    return 0;
}
E 补题
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋转不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋转不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋转不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步转换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋转不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋转不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值