Codeforces Round #682 (Div. 2)

164 篇文章 0 订阅
传送门

Codeforces Round #682 (Div. 2)

A

显然元素全部为 1 1 1 的数组满足要求。

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;

int main()
{
    int t, n;
    scanf("%d", &t);
    while (t--)
    {
        scanf("%d", &n);
        for (int i = 0; i < n; ++i)
            printf("%d%c", 1, i + 1 == n ? '\n' : ' ');
    }
    return 0;
}
B 补题

第一反应居然是对 a a a 快速幂模素数求前缀和,然后暴力枚举子区间哈希处理,在 T L E TLE TLE 的边缘冲突了…… u n r a t e d unrated unrated 之后直接睡了

假设 b b b 中包含两个相同的元素,那么将其作为不相交子数组;反之,考虑区间和的二进制表示,不同的 b b b 使区间和在不同的位置为 1 1 1 ,显然没有满足条件的不相交子数组。

#include <bits/stdc++.h>
using namespace std;
#define maxn 1005
int B[maxn];

int main()
{
    int t, n;
    scanf("%d", &t);
    while (t--)
    {
        unordered_set<int> st;
        bool f = 0;
        scanf("%d", &n);
        for (int i = 0; i < n; ++i)
        {
            scanf("%d", B + i);
            if (st.count(B[i]))
                f = 1;
            else
                st.insert(B[i]);
        }
        puts(f ? "YES" : "NO");
    }
    return 0;
}
C 补题
2-SAT

矩阵内的任一个格子,只有保持原值或增加一两种可能,那么考虑 2 − S A T 2-SAT 2SAT。定义布尔变量 x i x_i xi,设 i d [ i ] [ j ] id[i][j] id[i][j] 为位置 ( i , j ) (i,j) (i,j) 格子的索引
x i d [ i ] [ j ] 为 真 ↔ 位 置 为 ( i , j ) 的 格 子 保 持 原 值 x_{id[i][j]}为真\leftrightarrow 位置为(i,j)的格子保持原值 xid[i][j](i,j) 那么枚举每一个位置的格子,判断它与相邻的格子是否相等,进行连边。比如,若 x i d [ i ] [ j ] = x i d [ i ′ ] [ j ′ ] x_{id[i][j]}=x_{id[i'][j']} xid[i][j]=xid[i][j],那么需要满足的布尔方程为 ¬ ( x i d [ i ] [ j ] ∧ x i d [ i ′ ] [ j ′ ] ) \lnot(x_{id[i][j]}\land x_{id[i'][j']}) ¬(xid[i][j]xid[i][j]),即 ¬ x i d [ i ] [ j ] ∨ ¬ x i d [ i ′ ] [ j ′ ] \lnot x_{id[i][j]} \lor \lnot x_{id[i'][j']} ¬xid[i][j]¬xid[i][j],从 x i d [ i ] [ j ] x_{id[i][j]} xid[i][j] ¬ x i d [ i ′ ] [ j ′ ] \lnot x_{id[i'][j']} ¬xid[i][j] 连一条有向边。

分解强连通分量后,对任一拓扑序的变量赋予真值,相应的对矩阵元素进行处理。

#include <bits/stdc++.h>
using namespace std;
#define maxn 105
const int di[4] = {0, 0, -1, 1}, dj[4] = {-1, 1, 0, 0};
int t, n, m, mat[maxn][maxn], id[maxn][maxn];
vector<int> G[2 * maxn * maxn], rG[2 * maxn * maxn], vs;
bool used[2 * maxn * maxn];
int cmp[2 * maxn * maxn];

void add_edge(int u, int v)
{
    G[u].push_back(v);
    rG[v].push_back(u);
}

void dfs(int v)
{
    used[v] = 1;
    for (int i = 0; i < (int)G[v].size(); ++i)
    {
        int u = G[v][i];
        if (!used[u])
            dfs(u);
    }
    vs.push_back(v);
}

void rdfs(int v, int k)
{
    used[v] = 1, cmp[v] = k;
    for (int i = 0; i < (int)rG[v].size(); ++i)
    {
        int u = rG[v][i];
        if (!used[u])
            rdfs(u, k);
    }
}

int scc(int V)
{
    memset(used, 0, sizeof(used));
    vs.clear();
    for (int v = 0; v < V; ++v)
        if (!used[v])
            dfs(v);
    memset(used, 0, sizeof(used));
    int k = 0;
    for (int i = vs.size() - 1; i >= 0; --i)
        if (!used[vs[i]])
            rdfs(vs[i], ++k);
    return k;
}

inline bool judge(int i, int j)
{
    return 0 <= i && i < n && 0 <= j && j < m;
}

void solve()
{
    for (int i = 0; i < n; ++i)
        for (int j = 0; j < m; ++j)
            id[i][j] = i * m + j;
    int mn = n * m, V = mn * 2;
    for (int v = 0; v < V; ++v)
    {
        G[v].clear();
        rG[v].clear();
    }
    for (int i = 0; i < n; ++i)
        for (int j = 0; j < m; ++j)
        {
            int u = id[i][j];
            for (int k = 0; k < 4; ++k)
            {
                int ni = i + di[k], nj = j + dj[k];
                if (judge(ni, nj))
                {
                    int v = id[ni][nj];
                    if (mat[i][j] == mat[ni][nj])
                        add_edge(u, v + mn);
                    if (mat[i][j] == mat[ni][nj] + 1)
                        add_edge(u, v);
                    if (mat[i][j] + 1 == mat[ni][nj])
                        add_edge(u + mn, v + mn);
                    if (mat[i][j] + 1 == mat[ni][nj] + 1)
                        add_edge(u + mn, v);
                }
            }
        }
    scc(V);
    for (int i = 0; i < n; ++i)
        for (int j = 0; j < m; ++j)
        {
            int u = id[i][j];
            if (cmp[u] < cmp[u + mn])
                ++mat[i][j];
        }
}

int main()
{
    scanf("%d", &t);
    while (t--)
    {
        scanf("%d%d", &n, &m);
        for (int i = 0; i < n; ++i)
            for (int j = 0; j < m; ++j)
                scanf("%d", mat[i] + j);
        solve();
        for (int i = 0; i < n; ++i)
            for (int j = 0; j < m; ++j)
                printf("%d%c", mat[i][j], j + 1 == m ? '\n' : ' ');
    }
    return 0;
}
奇偶性

t u t o r i a l tutorial tutorial 的解法巧妙地利用了相邻主对角线奇偶性不同的特征。考虑将坐标和为奇数和偶数的格子分别染成黑色与白色,每一个黑/白色的格子都被白/黑色的格子包围,若黑白格子上的数字奇偶性不同,则它们一定不相等;且数字增加一改变它的奇偶性。那么将染为黑色的格子赋为奇数,将染为白色的格子赋为偶数。

#include <bits/stdc++.h>
using namespace std;
#define maxn 105
int mat[maxn][maxn];

int main()
{
    int t, n, m;
    scanf("%d", &t);
    while (t--)
    {
        scanf("%d%d", &n, &m);
        for (int i = 0; i < n; ++i)
            for (int j = 0; j < m; ++j)
            {
                scanf("%d", mat[i] + j);
                if ((mat[i][j] & 1) != ((i + j) & 1))
                    ++mat[i][j];
            }
        for (int i = 0; i < n; ++i)
            for (int j = 0; j < m; ++j)
                printf("%d%c", mat[i][j], j + 1 == m ? '\n' : ' ');
    }
    return 0;
}
D 补题

论修炼构造法的重要性。

设数组所有元素的异或值为 X X X,考虑将所有元素处理为 X X X。相同元素异或为零,则对于三元组 ( x , y , y ) (x,y,y) (x,y,y),操作后赋值为 ( x , x , x ) (x,x,x) (x,x,x)。考虑 n n n 为奇数的情况,从前向后不断构造这样的二元组,共 ⌊ n 2 ⌋ \lfloor \frac{n}{2}\rfloor 2n 组;再用最后一个元素对二元组进行操作,共 ⌊ n 2 ⌋ \lfloor \frac{n}{2}\rfloor 2n 次,最终各元素都等于 X X X。操作总次数为 2 × ⌊ n 2 ⌋ = n − 1 2\times\lfloor \frac{n}{2}\rfloor=n-1 2×2n=n1 次,满足限制。

n n n 为偶数,按照上述方法构造,在处理最后一个二元组时,会出现无法凑出三个元素的情况。考虑 ( a i , a j , a k ) (a_i,a_j,a_k) (ai,aj,ak),那么操作前后三个元素的异或值都为 a i ⊕ a j ⊕ a k a_i\oplus a_j \oplus a_k aiajak,可以观察到操作无法改变 X X X。因为偶数个相同元素异或值为零,假设 X ≠ 0 X\neq 0 X=0,则无法构造出这样的数组。那么处理前 n − 1 n-1 n1 个元素,此时 a n − 1 = X ⊕ a n = a n a_{n-1}=X\oplus a_{n}=a_{n} an1=Xan=an

#include <bits/stdc++.h>
using namespace std;
#define maxn 100005
int A[maxn];

int main()
{
    int n;
    scanf("%d", &n);
    for (int i = 1; i <= n; ++i)
        scanf("%d", A + i);
    if (n & 1)
    {
        puts("YES");
        printf("%d\n", n - 1);
        for (int i = 1; i + 2 <= n; i += 2)
            printf("%d %d %d\n", i, i + 1, i + 2);
        for (int i = n; i - 2 >= 1; i -= 2)
            printf("%d %d %d\n", i, i - 1, i - 2);
    }
    else
    {
        int s = 0;
        for (int i = 1; i <= n; ++i)
            s ^= A[i];
        if (s)
            puts("NO");
        else
        {
            puts("YES");
            printf("%d\n", n - 2);
            for (int i = 1; i + 2 <= n - 1; i += 2)
                printf("%d %d %d\n", i, i + 1, i + 2);
            for (int i = n - 1; i - 2 >= 1; i -= 2)
                printf("%d %d %d\n", i, i - 1, i - 2);
        }
    }
    return 0;
}
E 补题
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值