HDU 6390 容斥原理

本文介绍了如何利用欧拉函数和容斥原理解决HDOU6390题目,涉及gcd的应用、预处理欧拉函数的方法,以及利用线性筛和容斥原理求解约数计数问题。通过实例展示了计算Gu(a,b)的技巧和统计相同gcd情况的策略,最终给出时间复杂度分析。
摘要由CSDN通过智能技术生成
题意

传送门 HDU 6390

题解

g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1,则有 ϕ ( a ) ϕ ( b ) = ϕ ( a b ) , G u ( a , b ) = 1 \phi(a)\phi(b)=\phi(ab),G_u(a,b)=1 ϕ(a)ϕ(b)=ϕ(ab),Gu(a,b)=1 假设 a = p e 1 , b = p e 2 a=p^{e1},b=p^{e2} a=pe1,b=pe2,则有 G u ( a , b ) = p e 1 + e 2 ∗ ( p − 1 ) / p [ p e 1 ∗ ( p − 1 ) / p ] ∗ [ p e 2 ∗ ( p − 1 ) / p ] = p p − 1 G_u(a,b)=\frac{p^{e1+e2}*(p-1)/p}{[p^{e1}*(p-1)/p]*[p^{e2}*(p-1)/p]}=\frac{p}{p-1} Gu(a,b)=[pe1(p1)/p][pe2(p1)/p]pe1+e2(p1)/p=p1p 那么虑 g c d ( a , b ) gcd(a,b) gcd(a,b) 的质因子即可,可以得到 G u ( a , b ) = g c d ( a , b ) ϕ [ g c d ( a , b ) ] G_u(a,b)=\frac{gcd(a,b)}{\phi [gcd(a,b)]} Gu(a,b)=ϕ[gcd(a,b)]gcd(a,b) 线性筛预处理出欧拉函数,然后对相同 g c d ( a , b ) gcd(a,b) gcd(a,b) 的情况进行统计。

容斥原理求解的基本思想是若 d ∣ n , d ∣ m d|n,d|m dn,dm,则 g c d ( n , m ) ≥ d gcd(n,m)\geq d gcd(n,m)d,计算 [ 1 , n ] × [ 1 , m ] [1,n]\times [1,m] [1,n]×[1,m] 内约数为 d d d 的情况是容易的,即 ⌊ n / d ⌋ × ⌊ m / d ⌋ \lfloor n/d\rfloor \times\lfloor m/d \rfloor n/d×m/d;那么从最大可能的约数向最小可能约数枚举,每次减去 g c d gcd gcd 为当前枚举的约数的倍数的情况,同时统计答案即可。时间复杂度 O ( T n l o g n ) O(Tnlogn) O(Tnlogn)

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
#define maxn 1000005
typedef long long ll;
int prime[maxn >> 1], phi[maxn];
ll inv[maxn], f[maxn];
bool used[maxn];

void sieve()
{
    int p = 0;
    phi[1] = 1;
    for (int i = 2; i < maxn; ++i)
    {
        if (!used[i])
        {
            prime[p++] = i;
            phi[i] = i - 1;
        }
        for (int j = 0; j < p && prime[j] * i < maxn; ++j)
        {
            int k = prime[j] * i;
            used[k] = 1;
            if (i % prime[j] == 0)
            {
                phi[k] = phi[i] * prime[j];
                break;
            }
            else
                phi[k] = phi[i] * (prime[j] - 1);
        }
    }
}

int main()
{
    sieve();
    int t, n, m, p;
    scanf("%d", &t);
    while (t--)
    {
        scanf("%d%d%d", &m, &n, &p);
        int limit = min(n, m);
        inv[1] = 1;
        for (int i = 2; i <= limit; ++i)
            inv[i] = (p - p / i) * inv[p % i] % p;
        ll res = 0;
        for (int i = limit; i >= 1; --i)
        {
            f[i] = (ll)(n / i) * (m / i);
            for (int j = (i << 1); j <= limit; j += i)
                f[i] -= f[j];
            res += f[i] % p * i % p * inv[phi[i]] % p;
        }
        printf("%lld\n", res % p);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值