题意
传送门 P3605 [USACO17JAN]Promotion Counting P
题解
线段树合并
对每一个节点,建立一颗动态开点的权值线段树,将对应能力值插入线段树后,进行一次 D F S DFS DFS,将所有子节点与当前节点合并,同时查询答案。时间复杂度 O ( N log N ) O(N\log N) O(NlogN)。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 100005, maxlg = 18;
struct node
{
#define lc(x) tree[x].lc
#define rc(x) tree[x].rc
#define sum(x) tree[x].sum
int lc, rc, sum;
} tree[maxn * maxlg];
int N, tot, P[maxn], sp[maxn], rt[maxn], res[maxn];
int E, head[maxn], to[maxn << 1], nxt[maxn << 1];
void add(int x, int y) { to[++E] = y, nxt[E] = head[x], head[x] = E; }
void insert(int &p, int l, int r, int x, int d)
{
if (!p)
p = ++tot;
if (r - l == 1)
{
sum(p) += d;
return;
}
int m = (l + r) >> 1;
x < m ? insert(lc(p), l, m, x, d) : insert(rc(p), m, r, x, d);
sum(p) = sum(lc(p)) + sum(rc(p));
}
int merge(int p, int q, int l, int r)
{
if (!p || !q)
return p + q;
if (r - l == 1)
{
sum(p) += sum(q);
return p;
}
int m = (l + r) >> 1;
lc(p) = merge(lc(p), lc(q), l, m), rc(p) = merge(rc(p), rc(q), m, r);
sum(p) = sum(lc(p)) + sum(rc(p));
return p;
}
int ask(int a, int b, int p, int l, int r)
{
if (r <= a || b <= l)
return 0;
if (a <= l && r <= b)
return sum(p);
int m = (l + r) >> 1;
return ask(a, b, lc(p), l, m) + ask(a, b, rc(p), m, r);
}
void dfs(int x, int f)
{
for (int i = head[x]; i; i = nxt[i])
{
int y = to[i];
if (y != f)
{
dfs(y, x);
rt[x] = merge(rt[x], rt[y], 0, N);
}
}
res[x] = ask(P[x] + 1, N, rt[x], 0, N);
}
int main()
{
scanf("%d", &N);
for (int i = 1; i <= N; ++i)
scanf("%d", P + i), sp[i] = P[i];
for (int i = 2, f; i <= N; ++i)
{
scanf("%d", &f);
add(i, f), add(f, i);
}
sort(sp + 1, sp + N + 1);
for (int i = 1; i <= N; ++i)
P[i] = lower_bound(sp + 1, sp + N + 1, P[i]) - (sp + 1);
for (int i = 1; i <= N; ++i)
insert(rt[i], 0, N, P[i], 1);
dfs(1, 0);
for (int i = 1; i <= N; ++i)
printf("%d\n", res[i]);
return 0;
}
BIT
能力值的个数满足区间可加性,使用 B I T BIT BIT 维护。在树上 D F S DFS DFS 至节点 x x x 时,统计不属于以节点 x x x 为根节点的子树上的点中大于 p x p_x px 的节点个数,回溯时将 s u m ( N ) − s u m ( x ) sum(N)-sum(x) sum(N)−sum(x) 减去这个值,就得到了属于以节点 x x x 为根节点的子树上的点中大于 p x p_x px 的节点个数。时间复杂度 O ( N log N ) O(N\log N) O(NlogN)。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 100005;
int N, tot, P[maxn], sp[maxn], bit[maxn], res[maxn];
int E, head[maxn], to[maxn << 1], nxt[maxn << 1];
void add(int x, int y) { to[++E] = y, nxt[E] = head[x], head[x] = E; }
void add(int i)
{
while (i <= N)
++bit[i], i += i & -i;
}
int sum(int i)
{
int s = 0;
while (i)
s += bit[i], i -= i & -i;
return s;
}
void dfs(int x, int f)
{
int pre = sum(N) - sum(P[x]);
add(P[x]);
for (int i = head[x]; i; i = nxt[i])
{
int y = to[i];
if (y != f)
dfs(y, x);
}
res[x] = sum(N) - sum(P[x]) - pre;
}
int main()
{
scanf("%d", &N);
for (int i = 1; i <= N; ++i)
scanf("%d", P + i), sp[i] = P[i];
for (int i = 2, f; i <= N; ++i)
{
scanf("%d", &f);
add(i, f), add(f, i);
}
sort(sp + 1, sp + N + 1);
for (int i = 1; i <= N; ++i)
P[i] = lower_bound(sp + 1, sp + N + 1, P[i]) - sp;
dfs(1, 0);
for (int i = 1; i <= N; ++i)
printf("%d\n", res[i]);
return 0;
}