P3813 [FJOI2017] 容斥原理

本文介绍了P3813[FJOI2017]矩阵填数问题的两种高效解决方案:一种是坐标离散化处理,通过快速幂统计子矩阵最大值小于等于指定值的方案;另一种是分值域统计加容斥原理,通过计算不同值域子矩阵的组合策略。两种方法的时间复杂度分别为O(N^3 * 2^N log N)和O(3^N + 2^N log N)。
摘要由CSDN通过智能技术生成
题意

传送门 P3813 [FJOI2017]矩阵填数

题解

答案为各子矩阵 i i i 的最大值小于等于 v i v_i vi 的方案数,减去各子矩阵 i i i 的最大值小于 v i v_i vi 的方案数。考虑容斥原理,则需要求解数个子矩阵的最大值同时小于自身 v v v 的方案数。有如下两种方案:坐标离散化;分值域统计 + 容斥原理。

坐标离散化

横纵轴值域较大,坐标离散化处理。此时,平面划分为 O ( N 2 ) O(N^2) O(N2) 个值域相同的区域。 O ( N 3 2 N log ⁡ N ) O(N^32^N\log N) O(N32NlogN) 枚举子集,暴力扫描区域,使用快速幂进行统计。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 11, maxx = maxn * 2, mod = 1e9 + 7;
struct matrix
{
    int x1, y1, x2, y2, v;
} mat[maxn];
int T, H, W, M, N;
int F[maxx][maxx], nx, sx[maxx], ny, sy[maxx];

inline int cpx(int x) { return lower_bound(sx, sx + nx, x) - sx; }

inline int cpy(int y) { return lower_bound(sy, sy + ny, y) - sy; }

ll pw(ll x, int n)
{
    ll res = 1;
    while (n)
    {
        if (n & 1)
            res = res * x % mod;
        x = x * x % mod, n >>= 1;
    }
    return res;
}

int main()
{
    scanf("%d", &T);
    while (T--)
    {
        scanf("%d%d%d%d", &H, &W, &M, &N);
        nx = ny = 0;
        sx[nx++] = 0, sx[nx++] = H;
        sy[ny++] = 0, sy[ny++] = W;
        for (int i = 0; i < N; ++i)
        {
            matrix &t = mat[i];
            scanf("%d%d%d%d%d", &t.x1, &t.y1, &t.x2, &t.y2, &t.v);
            sx[nx++] = --t.x1, sx[nx++] = t.x2;
            sy[ny++] = --t.y1, sy[ny++] = t.y2;
        }
        sort(sx, sx + nx), nx = unique(sx, sx + nx) - sx;
        sort(sy, sy + ny), ny = unique(sy, sy + ny) - sy;
        for (int i = 0; i < N; ++i)
        {
            matrix &t = mat[i];
            t.x1 = cpx(t.x1), t.y1 = cpy(t.y1);
            t.x2 = cpx(t.x2), t.y2 = cpy(t.y2);
        }
        ll res = 0;
        for (int i = 0; i < (1 << N); ++i)
        {
            for (int x = 0; x + 1 < nx; ++x)
                for (int y = 0; y + 1 < ny; ++y)
                    F[x][y] = M;
            int c = 0;
            for (int j = 0; j < N; ++j)
            {
                if (i >> j & 1)
                    ++c;
                matrix &t = mat[j];
                for (int x = t.x1; x < t.x2; ++x)
                    for (int y = t.y1; y < t.y2; ++y)
                        F[x][y] = min(F[x][y], (i >> j & 1) ? t.v - 1 : t.v);
            }
            ll tmp = 1;
            for (int x = 0; x + 1 < nx; ++x)
                for (int y = 0; y + 1 < ny; ++y)
                    tmp = tmp * pw(F[x][y], (sx[x + 1] - sx[x]) * (sy[y + 1] - sy[y])) % mod;
            res += (c & 1) ? -tmp : tmp;
        }
        printf("%lld\n", (res % mod + mod) % mod);
    }
    return 0;
}
分值域统计 + 容斥原理

若一个子矩阵满足最大值为 v v v 的条件,那么合法方案中子矩阵所有元素小于等于 v v v,且至少存在一个值为 v v v 的元素。容易观察到,值域不同的元素可以独立地计算,最后通过乘法原理统计。

将子矩阵按照 v v v 排序,分值域统计。设所有元素值域为 [ 1 , v ] [1,v] [1,v] 的区域面积为 s u m sum sum,某个子矩阵中所有元素值域为 [ 1 , v ] [1,v] [1,v] 的区域面积为 s s s。则子矩阵的最大值小于 v v v 的方案数为 ( v − 1 ) s v s u m − s (v-1)^sv^{sum-s} (v1)svsums。值域为 [ 1 , v ] [1,v] [1,v] 的区域面积,可以通过值域为 [ 1 , v ] [1,v] [1,v] [ 1 , v ′ ] , v ′ < v [1,v'],v'<v [1,v],v<v 的区域并集的面积减去值域为 [ 1 , v ′ ] , v ′ < v [1,v'],v'<v [1,v],v<v 的区域面积求解。

O ( 3 N ) O(3^N) O(3N) 应用容斥原理预处理出所有矩阵并的面积,总时间复杂度 ( 3 N + 2 N log ⁡ N ) (3^N+2^N\log N) (3N+2NlogN).

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 11, mod = 1e9 + 7;
struct matrix
{
    int x1, y1, x2, y2, v;
    bool operator<(const matrix &o) const { return v < o.v; }
    matrix operator&(const matrix &o)
    {
        matrix t;
        t.x1 = max(x1, o.x1), t.y1 = max(y1, o.y1);
        t.x2 = min(x2, o.x2), t.y2 = min(y2, o.y2);
        return t;
    }
    int S()
    {
        if (x1 > x2 || y1 > y2)
            return 0;
        return (x2 - x1 + 1) * (y2 - y1 + 1);
    }
} org[maxn], mat[1 << maxn];
int T, H, W, M, N, sz[1 << maxn];
ll is[1 << maxn], us[1 << maxn];

ll pw(ll x, int n)
{
    ll res = 1;
    while (n)
    {
        if (n & 1)
            res = res * x % mod;
        x = x * x % mod, n >>= 1;
    }
    return res;
}

int main()
{
    scanf("%d", &T);
    while (T--)
    {
        scanf("%d%d%d%d", &H, &W, &M, &N);
        for (int i = 0; i < N; ++i)
            scanf("%d%d%d%d%d", &org[i].x1, &org[i].y1, &org[i].x2, &org[i].y2, &org[i].v);
        sort(org, org + N);
        for (int i = 0; i < N; ++i)
            mat[1 << i] = org[i], is[1 << i] = org[i].S(), sz[1 << i] = 1;
        for (int i = 1, low; i < (1 << N); ++i)
            if (i != (low = i & -i))
            {
                mat[i] = mat[i - low] & mat[low];
                is[i] = mat[i].S(), sz[i] = sz[i - low] + 1;
            }
        us[0] = 0;
        for (int i = 1; i < (1 << N); ++i)
        {
            us[i] = 0;
            for (int sub = i; sub; sub = i & (sub - 1))
                us[i] += (sz[sub] & 1) ? is[sub] : -is[sub];
        }
        ll res = 1;
        for (int i = 0, l = 0, r = 0; i < N; ++i)
            if (i + 1 == N || org[i].v != org[i + 1].v)
            {
                r = i + 1;
                if (org[i].v > 1)
                {
                    int ls = (1 << l) - 1, rs = (1 << r) - 1 - ls;
                    for (int i = l; i < r; ++i)
                        if (us[(1 << i) | ls] - us[ls] == 0)
                            res = 0;
                    if (!res)
                        break;
                    int sum = us[rs | ls] - us[ls], v = org[i].v;
                    ll tmp = pw(v, sum);
                    for (int sub = rs; sub; sub = rs & (sub - 1))
                    {
                        int s = us[sub | ls] - us[ls];
                        ll t = pw(v - 1, s) * pw(v, sum - s) % mod;
                        tmp += (sz[sub] & 1) ? -t : t, tmp %= mod;
                    }
                    res = tmp * res % mod;
                }
                l = r;
            }
        res = res * pw(M, H * W - us[(1 << N) - 1]) % mod;
        printf("%lld\n", (res % mod + mod) % mod);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值