题意
传送门 Codeforces 1856E2 PermuTree (hard version)
题解
可以独立考虑每一个固定的 p = l c a ( u , v ) p=lca(u,v) p=lca(u,v) 对答案的贡献。可以观察到,对于 p p p 的每一棵子树,其所有节点在最优情况下仅有 a p < a v a_p < a_v ap<av 或 a p > a v a_p > a_v ap>av 两种可能。那么需要在值域上将子树的节点左右划分,那么需要求解所有子树的子集中,子树规模 s z v sz_v szv 的和最接近所有子树和的 1 / 2 1/2 1/2 的值 x x x,则对答案的贡献为 x ∗ ( s z p − 1 − x ) x * (sz_p - 1 - x) x∗(szp−1−x)。对于上述背包问题,满足 s z u + ⋯ + s z v = s z p − 1 sz_u + \cdots + sz_v = sz_p - 1 szu+⋯+szv=szp−1,可以做到 O ( s z p s z p ) O(sz_p\sqrt{sz_p}) O(szpszp),具体做法类似于二进制拆分,不断将相同的值合并,最终每一个不同的值仅有常数个,则不同的值数量为 O ( s z p ) O(\sqrt{sz_p}) O(szp)。
若存在 s z v ∗ 2 ≥ s z p − 1 sz_v * 2 \geq sz_p - 1 szv∗2≥szp−1,则无需进行背包。考虑最坏情况,即平衡的多叉树,容易观察到所有背包 DP 的复杂度为 O ( n n ) O(n\sqrt{n}) O(nn), std::bitset 优化即可。
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
constexpr int N = 1E6;
template <int m = 1>
ll knapsack(int n, vector<int> &b) {
if (m < n) {
return knapsack<min(m * 2, N)>(n, b);
}
bitset<m + 1> bt;
bt[0] = 1;
for (int x : b) {
bt |= bt << x;
}
int res = -1;
for (int i = 0; i <= m; ++i) {
if (bt[i] > 0) {
if (res == -1 || abs(2 * res - n) > abs(2 * i - n)) {
res = i;
}
}
}
return res;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n;
cin >> n;
vector<vector<int>> g(n);
for (int i = 1; i < n; ++i) {
int p;
cin >> p;
g[p - 1].push_back(i);
}
auto get = [&](vector<int> &a) -> ll {
if ((int)a.size() < 2) {
return 0;
}
int sum = 0, mx = 0;
for (int x : a) {
sum += x;
mx = max(mx, x);
}
if (mx * 2 >= sum) {
return (ll)mx * (sum - mx);
}
vector<int> b;
vector<int> freq(sum + 1);
for (int x : a) {
freq[x] += 1;
}
for (int i = 1; i <= sum; ++i) {
if (freq[i] > 0) {
int d = (freq[i] - 1) / 2;
freq[2 * i] += d;
freq[i] -= d * 2;
for (int j = 0; j < freq[i]; ++j) {
b.push_back(i);
}
}
}
int x = knapsack(sum, b);
return (ll)x * (sum - x);
};
vector<int> sz(n);
ll res = 0;
function<void(int)> dfs = [&](int v) {
sz[v] = 1;
vector<int> a;
for (int u : g[v]) {
dfs(u);
a.push_back(sz[u]);
sz[v] += sz[u];
}
res += get(a);
};
dfs(0);
cout << res << '\n';
return 0;
}