目录
一、实验概述 3
(1) 实验目的 3
(2) 实验内容 3
二、实验方案设计 3
(1) 总体设计思路与总体架构 3
3. 流程图:(见下页) 3
(2) 核心算法及基本原理 4
(3) 模块设计 5
(4) 其它创新内容或优化算法 8
15 数码问题也能通过简单的修改宏定义来整体适应。 9
三、实验过程 9
(1) 环境说明 9
(2) 源文件代码清单、主要函数清单 9
8Puzzle_UI.h: 9
8Puzzle.h: 10
(3) 实验结果展示 13
(4) 实验结论 16
四、总结 16
(1) 实验中存在的问题及解决方案 16
(2) 心得体会 17
(3) 后续改进方向 17
(4) 总结 18
五、参考文献 18
六、成员分工与自评 18
- 成员分工: 18
- 成员自评: 18
- 总体评价与收获 19
一、实验概述
(1)实验目的
熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用 A算法求解 8 数码难题,理解求解流程和搜索顺序。
(2)实验内容
1.采用 C++语言实现 A算法的求解八数码问题的程序,设计了两种不同的估价函数: 第一种:计算不在位的棋子数;第二种:计算所有棋子到其目标的距离和。
2.设置相同初始状态和目标状态,针对两种的估价函数,求得问题的解,并比较它们对搜索算法性能的影响,包括扩展节点数、生成节点数和运行时间。画出不同启发函数 h(n)求解 8 数码问题的结果比较表,进行性能分析。
3.通过 UI 界面显示八数码问题的初始状态,目标状态和中间搜索步骤。
4.画出搜索生成的树,在每个节点显示对应节点的 f (n)值,以显示搜索过程。以红色标注出最终结果所选用的路线。
二、实验方案设计
(1)总体设计思路与总体架构
1.总体设计思路:程序从设计上分为两个部分:算法实现部分和图形显示部分。两部分相互独立,仅通过函数进行数值传递或者指针传递的方式进行关联。当算法部分运行完成后,会得到关于一个八数码问题的最优路径解、搜索树以及求解过程中产生的例如生成结点数、扩展结点数的信息,将这些信息以数值、指针、字符串等形式传值至图形显示部分。
2.总体架构:总体架构设计基于上述的设计思路。程序代码具体分为:算法实现部分、八数码九宫格绘制部分、搜索树绘制部分三份代码。每份代码具有独立的数据结构定义及相关功能实现过程,通过 main()函数进行主算法的调用、参数传递,并在主算法中对图形界面绘制函数进行调用和传参。
本文转载自:http://www.biyezuopin.vip/onews.asp?id=16513
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <queue>
#include <stack>
#include <string>
#include<easyx.h>
#include <conio.h>
#include "8Puzzle.h"
using namespace std;
/* 构造函数,将initial和target置0,清空Open表和Close表,搜索树ST置空 */
EightPuzzle::EightPuzzle()
{
int i, j;
for (i = 0; i < MatrixSize; i++) {
for (j = 0; j < MatrixSize; j++) {
initial.matrix[i][j] = 0;
target.matrix[i][j] = 0;
}
}
initial.Gn = 0;
initial.Hn = 0;
initial.Fn = 0;
target.Gn = 0;
target.Hn = 0;
target.Fn = 0;
while (!Open.empty())
Open.pop();
while (!Close.empty())
Close.pop();
while (!Path.empty())
Path.pop();
PI.is_solvable = false;
PI.total_step = "总步数:0";
PI.total_time = "时间:0s";
InitSTree(ST);
}
/* 析构函数,清空Open表和Close表,销毁搜索树ST */
EightPuzzle::~EightPuzzle()
{
while (!Open.empty())
Open.pop();
while (!Close.empty())
Close.pop();
while (!Path.empty())
Path.pop();
DestroySTree(ST);
}
/* 重载< */
bool Matrix::operator<(const Matrix& a) const
{
return Fn < a.Fn;
}
/* 重载> */
bool Matrix::operator>(const Matrix& a) const
{
return Fn > a.Fn;
}
/* 重载<= */
bool Matrix::operator<=(const Matrix& a) const
{
return Fn <= a.Fn;
}
/* 重载>= */
bool Matrix::operator>=(const Matrix& a) const
{
return Fn >= a.Fn;
}
/* 重载== */
bool Matrix::operator==(const Matrix& a) const
{
int i, j;
for (i = 0; i < MatrixSize; i++) {
for (j = 0; j < MatrixSize; j++) {
if (matrix[i][j] != a.matrix[i][j])
return false;
}
}
return true;
}
/* 以随机赋值的方式生成initial和target */
void EightPuzzle::RandomAssignment()
{
int i, j, k = 1;
srand((unsigned)time(NULL));
while (k < ArraySize) {
i = rand() % MatrixSize;
j = rand() % MatrixSize;
if (!initial.matrix[i][j]) {
initial.matrix[i][j] = k;
k++;
}
}
k = 1;
while (k < ArraySize) {
i = rand() % MatrixSize;
j = rand() % MatrixSize;
if (!target.matrix[i][j]) {
target.matrix[i][j] = k;
k++;
}
}
}
/* 以键盘输入的方式对initial和target赋值 */
void EightPuzzle::TypeIn()
{
int i, j, flag = 0;
int check[ArraySize] = { 0 };
cout << "请输入初始状态,数字0-8,三行三列(空格位置处数字为0):" << endl;
while (1) {
flag = 0;
for (i = 0; i < ArraySize; i++) {
check[i] = 0;
}
for (i = 0; i < MatrixSize; i++) {
for (j = 0; j < MatrixSize; j++) {
cin >> initial.matrix[i][j];
if (cin.fail()) {
flag = 1;
cin.clear();
cin.ignore();
}
else if (initial.matrix[i][j] < 0 || initial.matrix[i][j] > 8)
flag = 1;
else
check[initial.matrix[i][j]]++;
}
}
for (i = 0; i < ArraySize; i++) {
if (check[i] != 1)
flag = 1;
}
if (flag) {
cout << "初始状态输入有误,请重新输入:" << endl;
flag = 0;
continue;
}
else
break;
}
cout << "请输入目标状态,数字0-8,三行三列(空格位置处数字为0):" << endl;
while (1) {
flag = 0;
for (i = 0; i < ArraySize; i++) {
check[i] = 0;
}
for (i = 0; i < MatrixSize; i++) {
for (j = 0; j < MatrixSize; j++) {
cin >> target.matrix[i][j];
if (cin.fail()) {
flag = 1;
cin.clear();
cin.ignore();
}
else if (target.matrix[i][j] < 0 || target.matrix[i][j] > 8)
flag = 1;
else
check[target.matrix[i][j]]++;
}
}
for (i = 0; i < ArraySize; i++) {
if (check[i] != 1)
flag = 1;
}
if (flag) {
cout << "目标状态输入有误,请重新输入:" << endl;
flag = 0;
continue;
}
else
break;
}
}
/* 判断初始八数码与目标八数码逆序数的奇偶性,问题是否可解 */
bool EightPuzzle::IsSolvable()
{
int count_initial = 0, count_target = 0;
int temp_initial[ArraySize], temp_target[ArraySize];
int i, j, k;
for (i = 0, k = 0; i < MatrixSize; i++) {
for (j = 0; j < MatrixSize; j++) {
temp_initial[k++] = initial.matrix[i][j];
}
}
for (i = 0, k = 0; i < MatrixSize; i++) {
for (j = 0; j < MatrixSize; j++) {
temp_target[k++] = target.matrix[i][j];
}
}
for (i = 1; i < ArraySize; i++) {
for (j = i - 1; j >= 0; j--) {
if (temp_initial[j] > temp_initial[i] && temp_initial[i]) {
count_initial++;
}
if (temp_target[j] > temp_target[i] && temp_target[i]) {
count_target++;
}
}
}
if (count_initial % 2 == count_target % 2)
return true;
else
return false;
}
/* 判断当前结点是否与target相同 */
bool EightPuzzle::IsOver(Matrix m)
{
return (m == target);
}
/* A*算法,type为Hn的计算方式,算法完成后更新PI中的信息 */
void EightPuzzle::AStar(int type)
{
EIGHT_PUZZLE_UI Peight;
Matrix current;
STNode* p;//p用于指示当前结点在搜索树中的位置
STNode* last;//last用于指示目标结点
clock_t start, end;
string message[6] = { "按回车开始演示" };//信息栏内容
int maxdepth;//记录搜索树的最大深度,用于绘图
int expande_node = 0;//当前结点可扩展结点数
int next_choose = 0;//选择的扩展结点序号
//以下分别为初始数组、目标数组、当前数组和当前可扩展数组
char display_initial[MatrixSize][MatrixSize];
char display_target[MatrixSize][MatrixSize];
char display_current[MatrixSize][MatrixSize];
char display_expandable[MaxExpandableNode][MatrixSize][MatrixSize];
PI.is_solvable = IsSolvable();
if (PI.is_solvable) {
start = clock();
//将初始结点的信息更新,加入Open表和搜索树ST中
Update(initial, type);
AddToOpen(initial);
CreateSTNode(ST, ST, initial, 0);
p = ST;
while (!Open.empty()) {
current = Open.top();//当前结点取Open表中Fn值最小的结点
//Show(current);//显示当前结点的信息
Open.pop();
PreOrderSearch(ST, p, current);//p指向当前结点在搜索树中的位置
if (IsOver(current))//当前结点是目标结点,结束循环
break;
else {
Expand(current, p, type);//当前结点不是目标结点,扩展当前结点
AddToClose(current);//扩展结束,当前结点加入Close表
}
}
PreOrderTraverse(ST, MyVisit);//先序遍历显示整个算法的搜索树
end = clock();
PI.total_step = "总步数:" + int_to_char(p->depth - 1);
PI.total_time = "时间:" + to_string(((double)end - (double)start) / CLOCKS_PER_SEC) + "s";
last = p;
CreatePath(p);
cout << "请按回车继续......" << endl;
_getch();
BestPath(last);
Depth_of_STree(ST, maxdepth);
//初始化绘图界面并绘制搜索树
Draw_STree(ST, Width, Height, Origin_X, Origin_Y, maxdepth);
//初始化UI界面
Draw_UI(Peight, PI.is_solvable);
//显示初始数组和目标数组
Mint_to_Mchar(display_initial, initial.matrix);
Mint_to_Mchar(display_target, target.matrix);
display_number(Peight, display_initial, MAIN_FRAME_RIGHT);
display_number(Peight, display_target, MAIN_FRAME_LEFT);
//显示初始界面信息
display_text(Peight, message);
_getch();
//用于消除“初始状态“提示
clearrectangle(MAIN_LEFT_REC_LEFT + MAIN_REC_SIDE_LENGTH + MAIN_REC_GAP_SIZE, MAIN_LEFT_REC_TOP - 20, MAIN_LEFT_REC_LEFT + MAIN_REC_SIDE_LENGTH + MAIN_REC_GAP_SIZE + MAINFRAME_TIP_HEIGHT * 4, MAIN_LEFT_REC_TOP - 2);
//切换”初始状态“为”当前状态“
set_mainframe_tip(Peight, false);
//切换”按回车演示“为”正在演示“
Peight.top_tip.tip = TOP_TIP_2;
//用于消除左上角信息重复提示
clearrectangle(0, 0, TOP_TIP_HEIGHT * 6, TOP_TIP_HEIGHT);
display_text(Peight, message);
//演示解决步骤
while (message[0] != "") {
//状态更新的时间间隔
Sleep(2000);
//_getch();
//获得Path中当前结点的信息
GetInfo(message, expande_node, next_choose, display_current, display_expandable);
//更新当前状态数组显示
draw_9squares(NINE_SQUARES, Peight.Main_frame.right_square);
display_number(Peight, display_current, MAIN_FRAME_RIGHT);
//指定可扩展结点的数目和选择的扩展结点
set_sub_square_num(Peight, expande_node);
set_selected_sub_square(Peight, next_choose);
//更新可扩展结点显示
draw_frame(Peight, SUB_FRAME);
for (int i = 0; i < expande_node; i++) {
display_number(Peight, display_expandable[i], SUB_FRAME, i);
}
//更新信息框显示
print_info_frame_tip(Peight, message);
}
//切换”正在演示“为”按回车演示“
Peight.top_tip.tip = TOP_TIP;
clearrectangle(0, 0, TOP_TIP_HEIGHT * 6, TOP_TIP_HEIGHT);
print_graph_frame_tip(Peight);
_getch();
}
else {
//初始化UI界面并显示无解
Draw_UI(Peight, PI.is_solvable);
//显示初始数组和目标数组
Mint_to_Mchar(display_initial, initial.matrix);
Mint_to_Mchar(display_target, target.matrix);
display_number(Peight, display_initial, MAIN_FRAME_RIGHT);
display_number(Peight, display_target, MAIN_FRAME_LEFT);
draw_frame(Peight, INFO_FRAME);
display_text(Peight, message);
_getch();
}
}
/* 找到当前结点中空格(0)所在的位置,x、y为位置坐标 */
void EightPuzzle::GetPos(Matrix m, int& x, int& y)
{
int i, j;
for (i = 0; i < MatrixSize; i++) {
for (j = 0; j < MatrixSize; j++) {
if (m.matrix[i][j] == 0) {
x = i;
y = j;
return;
}
}
}
}
/* 对结点空格进行上、下、左、右方向的移动,移动成功后对结点的Gn值进行更新 */
Status EightPuzzle::Move(Matrix& m, int direction) {
int x, y;
GetPos(m, x, y);
switch (direction) {
case Up:
if (x == 0)
return ERROR;
else {
m.matrix[x][y] = m.matrix[x - 1][y];
m.matrix[x - 1][y] = 0;
m.Gn++;
return OK;
}
break;
case Down:
if (x == MatrixSize - 1)
return ERROR;
else {
m.matrix[x][y] = m.matrix[x + 1][y];
m.matrix[x + 1][y] = 0;
m.Gn++;
return OK;
}
break;
case Left:
if (y == 0)
return ERROR;
else {
m.matrix[x][y] = m.matrix[x][y - 1];
m.matrix[x][y - 1] = 0;
m.Gn++;
return OK;
}
break;
case Right:
if (y == MatrixSize - 1)
return ERROR;
else {
m.matrix[x][y] = m.matrix[x][y + 1];
m.matrix[x][y + 1] = 0;
m.Gn++;
return OK;
}
break;
default:
return ERROR;
break;
}
}
/*
对结点Hn值、Fn值进行更新,添加搜索树ST的结点
type:Hn的计算方式
p:搜索树中当前扩展结点的指针
*/
void EightPuzzle::Expand(Matrix& m, STNode* p, int type)
{
Matrix temp;
int direction, first = 1;
//向上、下、左、右四个方向扩展结点
for (direction = Up; direction <= Right; direction++) {
temp = m;
if (Move(temp, direction)) {
Update(temp, type);//若该方向可扩展结点则更新扩展后的结点信息
if (AddToOpen(temp)) {//检查可扩展结点是否可以加入Open表,防止重复,可以则加入Open表
if (first) {//第1个可扩展结点作为指针所指结点的孩子结点
CreateSTNode(ST, p, temp, FirstChild);
p = p->firstchild;
first = 0;
}
else {//其余可扩展结点作为第1个可扩展结点的兄弟结点
CreateSTNode(ST, p, temp, NextSibling);
p = p->nextsibling;
}
}
}
}
}
/*
对当前结点进行上、下、左、右方向的扩展,type为Hn的计算方式
type=1:不在位的棋子数
type=2:所有棋子到其目标的距离和
*/
void EightPuzzle::Update(Matrix& m, int type)
{
int i, j, count = 0;
int temp[ArraySize][2] = { 0 };
switch (type) {
case 1:
for (i = 0; i < MatrixSize; i++) {
for (j = 0; j < MatrixSize; j++) {
if (m.matrix[i][j] != target.matrix[i][j] && m.matrix[i][j]) {
count++;
}
}
}
break;
case 2:
for (i = 0; i < MatrixSize; i++) {
for (j = 0; j < MatrixSize; j++) {
if (m.matrix[i][j]) {
temp[m.matrix[i][j]][0] = i;
temp[m.matrix[i][j]][1] = j;
}
}
}
for (i = 0; i < MatrixSize; i++) {
for (j = 0; j < MatrixSize; j++) {
if (target.matrix[i][j]) {
count += abs(i - temp[target.matrix[i][j]][0]) + abs(j - temp[target.matrix[i][j]][1]);
}
}
}
break;
default:
break;
}
m.Hn = count;
m.Fn = m.Gn + m.Hn;
}
/* 将结点加入Open表,成功返回OK,失败返回ERROR */
Status EightPuzzle::AddToOpen(Matrix m)
{
if (!FindInClose(m) && FindInOpen(m) == ERROR) {
Open.push(m);
return OK;
}
else//若Open表或Close表中有该结点则失败
return ERROR;
}
/* 将结点加入Close表,成功返回OK,失败返回ERROR */
Status EightPuzzle::AddToClose(Matrix m)
{
if (!FindInClose(m)) {
Close.push(m);
return OK;
}
else//若Close表中已有该结点则失败
return ERROR;
}
/* 查找Open表中是否有相同的结点,若有则更新结点信息 */
Status EightPuzzle::FindInClose(Matrix m)
{
Matrix temp, flag;
int status = ERROR;
if (!Close.empty()) {
flag = Close.front();
while (1) {
temp = Close.front();
Close.pop();
if (temp == m) {
status = OK;
}
Close.push(temp);
if (Close.front() == flag)
break;
}
return status;
}
else
return ERROR;
}
/* 查找Close表中是否有相同的结点 */
Status EightPuzzle::FindInOpen(Matrix m)
{
Matrix* p;
int i, size, status = ERROR;
size = Open.size();
if (!size) {
p = new(nothrow) Matrix[size];
if (!p)
return INFEASIBLE;
for (i = 0; i < size; i++) {
p[i] = Open.top();
Open.pop();
if (p[i] == m) {
status = OK;
if (m.Fn < p[i].Fn) {
p[i].Fn = m.Fn;
p[i].Gn = m.Gn;
p[i].Hn = m.Hn;
}
}
}
for (i = 0; i < size; i++) {
Open.push(p[i]);
}
delete[] p;
}
return status;
}
/* 将最优路径存储至栈Path中,从目标叶子结点回溯到根结点 */
void EightPuzzle::CreatePath(STNode* last_node)
{
MatrixInfo mi;
STNode* p = last_node, *q, *pre = NULL;
int count_en, i, j;
while (p) {
for (i = 0; i < MatrixSize; i++) {
for (j = 0; j < MatrixSize; j++) {
mi.current_matrix[i][j] = char(p->data.matrix[i][j]) + '0';
}
}
mi.Fn = "F(n)=" + int_to_char(p->data.Fn);
mi.Hn = "H(n)=" + int_to_char(p->data.Hn);
mi.Gn = "G(n)=" + int_to_char(p->data.Gn);
mi.step = "步数:" + int_to_char(p->depth - 1);
mi.next = -1;
q = p->firstchild;
count_en = 0;
while (q) {
if (pre) {
if (q->data.matrix == pre->data.matrix)
mi.next = count_en;
}
for (i = 0; i < MatrixSize; i++) {
for (j = 0; j < MatrixSize; j++) {
mi.expandable_matrix[count_en][i][j] = char(q->data.matrix[i][j]) + '0';
}
}
q = q->nextsibling;
count_en++;
}
mi.expandable_node = count_en;
pre = p;
p = p->parent;
Path.push(mi);
}
}
/* 新增:用于传至画图部分的信息字符串,最多调用总步数+1次 */
void EightPuzzle::GetInfo(string s[6], int& expande, int& next, char Current[MatrixSize][MatrixSize], char Expandable[MaxExpandableNode][MatrixSize][MatrixSize])
{
if (!Path.empty()) {
s[0] = PI.total_time; //第1条信息:时间
s[1] = PI.total_step; //第2条信息:总步数
s[2] = "已扩展结点数:" + to_string(Close.size()); //第3条信息:已扩展结点数
s[3] = "生成结点数:" + to_string(Close.size() + Open.size()); //第4条信息:生成结点数
s[4] = Path.top().step; //第5条信息:当前步数
s[5] = Path.top().Fn; //第6条信息:Fn值
expande = Path.top().expandable_node;
next = Path.top().next;
//Current = Path.top().current_matrix;
Matrix_to_Matrix(Current, Path.top().current_matrix);
//Expandable = Path.top().expandable_matrix;
for (int i = 0; i < 4; i++) {
Matrix_to_Matrix(Expandable[i], Path.top().expandable_matrix[i]);
}
Path.pop(); //该结点数据读取完毕,弹出Path栈
}
else
s[0] = "";
}
/* 显示当前结点的所有信息 */
void Show(Matrix m)
{
int i, j;
cout << endl;
for (i = 0; i < MatrixSize; i++) {
for (j = 0; j < MatrixSize; j++) {
if (m.matrix[i][j] == 0)
cout << " ";
else
cout << m.matrix[i][j] << ' ';
}
cout << endl;
}
cout << "F=" << m.Fn << endl;
cout << "G=" << m.Gn << endl;
cout << "H=" << m.Hn << endl << endl;
}
/* 初始化搜索树 */
Status InitSTree(STree& ST)
{
ST = NULL;
return OK;
}
/* 销毁搜索树 */
Status DestroySTree(STree& ST)
{
if (ST) {
if (ST->firstchild)
DestroySTree(ST->firstchild);
if ((ST)->nextsibling)
DestroySTree(ST->nextsibling);
delete ST;
ST = NULL;
}
return OK;
}
/*
创建新的搜索树结点,并连接至搜索树,type为新结点类型,Node为新结点需要连接至树的位置的结点指针
type=FIRSTCHILD:新结点为孩子结点
type=NEXTSIBLING:新结点为兄弟结点
*/
Status CreateSTNode(STree& ST, STNode* Node, TElemType e, int type)
{
STNode* p = NULL;
p = new(nothrow) STNode;
if (p == NULL)
return LOVERFLOW;
else {
p->data = e;
p->depth = e.Gn + 1;
p->target_path = FALSE;
p->firstchild = NULL;
p->nextsibling = NULL;
p->parent = NULL;
}
if (ST) {
switch (type) {
case FirstChild:
Node->firstchild = p;
p->parent = Node;
break;
case NextSibling:
Node->nextsibling = p;
p->parent = Node->parent;
break;
default:
break;
}
}
else {
ST = p;
}
return OK;
}
/* 先序遍历搜索树 */
Status PreOrderTraverse(STree ST, Status(*visit)(TElemType e))
{
if (ST) {
if ((*visit)(ST->data) == OK)
if (PreOrderTraverse(ST->firstchild, visit) == OK)
if (PreOrderTraverse(ST->nextsibling, visit) == OK)
return OK;
return ERROR;
}
else //空树返回OK
return OK;
}
/* 先序遍历搜索树查找与e值相同的结点,指针p指向其位置 */
Status PreOrderSearch(STree ST, STNode*& p, TElemType e)
{
if (ST) {
if (ST->data == e) {
p = ST;
return OK;
}
else {
if (PreOrderSearch(ST->firstchild, p, e) == OK)
return OK;
else {
if (PreOrderSearch(ST->nextsibling, p, e) == OK)
return OK;
else
return ERROR;
}
}
}
else
return ERROR;
}
/* 先序遍历搜索树中的显示函数 */
Status MyVisit(TElemType e)
{
Show(e);
cout << "深度=" << e.Gn + 1 << endl;
return OK;
}
/* 非负整数转化为字符串 */
string int_to_char(int n)
{
string s = "";
char m;
int k, l;
l = n;
if (n >= 10) {
k = l / 10;
s += int_to_char(k);
}
m = '0' + l % 10;
s += m;
return s;
}
/* 非负整数矩阵转化为字符矩阵 */
void Mint_to_Mchar(char c[MatrixSize][MatrixSize], int s[MatrixSize][MatrixSize])
{
for (int i = 0; i < MatrixSize; i++) {
for (int j = 0; j < MatrixSize; j++) {
c[i][j] = char(s[i][j]) + '0';
}
}
}
/* 字符矩阵相互赋值 */
void Matrix_to_Matrix(char a[MatrixSize][MatrixSize], char b[MatrixSize][MatrixSize])
{
for (int i = 0; i < MatrixSize; i++) {
for (int j = 0; j < MatrixSize; j++) {
a[i][j] = b[i][j];
}
}
}
/* 初始化绘制窗口并打印搜索树 */
void Draw_STree(STree &ST, const int width, const int height, const int X, const int Y, const int maxdepth)
{
// 创建绘图窗口,大小由参数传入
initgraph(width, height);
// 设置绘图原点,位置由参数传入
setorigin(X, Y);
// 设置背景以及填充色为白色
setbkcolor(WHITE);
// 用背景色清空屏幕
cleardevice();
//设置图形填充色为青色
setfillcolor(CYAN);
//设置文字输出底色为透明
setbkmode(TRANSPARENT);
// 设置绘图线为青色
setlinecolor(CYAN);
// 设置绘图线样式
setlinestyle(PS_SOLID, 1, PS_ENDCAP_ROUND, PS_JOIN_ROUND);
// 设置文字输出颜色为黑色
settextcolor(BLACK);
PrintSTree(ST, 0, 0, 0, 0, maxdepth);
outtextxy(-X, -Y, "请按回车继续...");
_getch(); // 按任意键继续
closegraph(); // 关闭绘图窗口
}
/* 打印搜索树 */
void PrintSTree(STree ST, int x, int y, int lastx, int lasty, int maxdepth)
{
if (ST) {
int depth = ST->depth;
char str[10];
if (ST->target_path == TRUE) {//当前结点为目标路径上的结点,用红线连接
setlinecolor(RED);
}
else {//否则用青线连接
setlinecolor(CYAN);
}
line(x, y, lastx, lasty);
//Sleep(50);
fillcircle(x, y, 15);
_itoa_s(ST->data.Fn, str, 10);
outtextxy(x - 4, y - 8, str);
PrintSTree(ST->firstchild, x - int(pow(2, (maxdepth - depth)) * Space_of_Tree), y + 4 * Space_of_Tree, x, y, maxdepth);
PrintSTree(ST->nextsibling, x + 2 * int(pow(2, (maxdepth - depth)) * Space_of_Tree), y, lastx, lasty, maxdepth);
}
}
/* 记录搜索树的最大深度 */
Status Depth_of_STree(STree ST, int& depth)
{
if (ST) {
if (ST->depth > depth) {
depth = ST->depth;
}
if (Depth_of_STree(ST->firstchild, depth) == OK) {
if (Depth_of_STree(ST->nextsibling, depth) == OK) {
return OK;
}
}
return ERROR;
}
else //空树返回OK
return OK;
}
/* 从目标叶子结点回溯到根结点找出最优路径,并在树中做标记 */
void BestPath(STNode* last_node)
{
STNode*p = last_node;
while (p) {
p->target_path = TRUE;
p = p->parent;
}
}
/* 初始化UI界面 */
void Draw_UI(EIGHT_PUZZLE_UI &Peight, bool Flag)
{
setui(Peight, GRAPH);
setui(Peight, MAIN_FRAME);
setui(Peight, SUB_FRAME);
setui(Peight, INFO_FRAME);
init_graph(Peight);
draw_frame(Peight, MAIN_FRAME);
set_sub_square_num(Peight, 4);
set_selected_sub_square(Peight, FORTH_REC);
draw_frame(Peight, INFO_FRAME);
init_tip(Peight, GRAPH);
init_tip(Peight, MAIN_FRAME);
init_tip(Peight, SUB_FRAME);
init_tip(Peight, INFO_FRAME);
is_solved(Peight, Flag);
set_mainframe_tip(Peight, true);
print_graph_frame_tip(Peight);
}