朴素Bayes分类器的应用研究与SVM的比较

本文探讨了贝叶斯理论和两种分类器(朴素贝叶斯与SVM)在多组数据集上的应用,通过UCI数据网获取数据,进行7:3的训练与测试划分,评估分类器性能,以准确度为核心指标。研究展示了两种分类器在不同数据集上的表现和优劣。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目 录
1 绪 论 7
1.1 选题背景及研究意义 7
1.2 国内外研究现状 8
1.3 论文研究思路及方法 8
1.2 论文结构安排 9
2分类与分类器 10
2.1 分类及分类器概念 10
2.1.1 分类 10
2.1.2 分类器 10
2.2 性能评价指标 10
2.3 准确度评价方法 11
2.4 小结 12
3贝叶斯理论与分类器 13
3.1 条件概率和乘法定理 13
3.2 全概率公式与贝叶斯公式 13
3.3 极大似然值估计及后验假设 14
3.3.1 极大后验假设 14
3.3.2 极大似然估计 14
3.4 朴素贝叶斯分类模型 14
3.5 SVM模型 15
3.6朴素贝叶斯分类模型优缺点 16
3.7 小结 16
4 分类实验 17
4.1分类模型 17
4.2 Monks3分类 18
4.2.1 朴素贝叶斯分类 18
4.2.2 SVM分类 19
4.3 House分类 19
4.3.1 朴素贝叶斯分类 19
4.3.2 SVM分类 20
4.4 Bupa分类 21
4.4.1 朴素贝叶斯分类 21
4.3.2 SVM分类 21
4.5 Wine分类 22
4.5.1 朴素贝叶斯分类 22
4.5.1 SVM分类 23
4.5 小结 24
4 分析与展望 26
4.1 分析 26
4.2 展望 26
4.2.1 应用 26
4.2.2 不足与发展 26
结 论 28
参考文献 29
附 录 31
致 谢 33
1.3 论文研究思路及方法
通过筛选将在UCI数据网上获得多组适用于分类的数据后在对各项数据进行划分:把所有的样本以7:3的形式划分为两组,一组作为训练集一组作为测试集,每一个类别之中的样本都由几个不同的元素组成;在通过使用训练集对分类器在这几个元素在每一个样本中的含量占比进行有监督性的学习之后使用测试集进行学习成果进行验收,同时使用混淆矩阵计算出结果的准确度,在不同实验情况之下互相对比得到结果,由此构建出一个拥有着高准确度的分类器。
1.2 论文结构安排
第一章 绪论,通过介绍贝叶斯分类器的概述,引出本文的研究的方法,对全球现有的分类器算法研究进行介绍,以及简要概括本文的主要构造的分类器内容和想要应用的地方。
第二章 分类与分类器,简单的介绍了分类的概念与分类器器的意义,并介绍了对分类器进行评估的几个方法,以用来计算分类器准确度。
第三章 理论与分类器,首先简要的概述了贝叶斯理论与朴素贝叶斯分类器模型的优劣势,并且引入了SVM模型与之进行对比
第四章 分类实验,使用不相同的多组数据对朴素贝叶斯分类器进行分类预测,并计算出分类器准确度,之后使用同组数据对两个不同分类器进行分类预测。
第五章 分析与展望,分析最后所获得的结果并例句可以使用到的应用,并且对该分类器列出不足的地方以期望得以改进。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值