城市公共自行车服务系统运行状况和效率分析—基于温州市鹿城区公共自行车系统运营实践的研究

该篇文章通过分析鹿城区公共自行车的借车还车频次、用车时间、最短与最长距离等数据,探讨了服务系统的特点和规律,提出了站点设置和社会福利最大化的评价,并为系统优化提供了政策建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录
摘 要 1
一 问题提出 2
1.1 题目背景与研究意义 2
1.2 问题重述 3
二 问题分析 4
2.1 基本思路 4
2.2 具体分析 4
三 基本假设 5
四 符号说明 5
五 数据预处理 6
六 公共自行车总体使用情况统计分析 6
6.1借车还车频次统计 6
6.2用车时间的区间频次统计 8
6.3效用函数模型 9
6.4出行时间的效用函数模型求解 11
6.5 借车卡累计借车次数统计分析 13
七 地理信息数据的获取 15
7.1公共自行车站点的坐标信息 15
7.2 城市道路地理信息 17
八 公共自行车时间、空间使用情况统计分析 17
8.1 站点距离的界定 17
8.2 借/还车的最短距离和最长距离 18
8.3 借/还车频次最高站点 18
8.4 峰值搜索算法 20
8.5用车高峰时段统计与归类 21
8.6 高峰时段的聚类分析 22
九 其他信息和公共自行车系统设置评价 23
9.1 潮汐现象 23
9.2 潮汐现象的表现 23
9.3 潮汐现象的解决 24
十 公共自行车服务系统的其他运行规律和政策建议 24
10.1 站点选址的社会福利最大化问题 24
10.2 公共自行车系统运行的调度机制 25
十一 结论 26
参考文献 27
附录 27
附录一: 27
附录二: 62
1.2 问题重述
借助鹿城区公共自行车客流数据和站点分布图,本文试图解决以下几个问题:
首先,分析公共自行车的使用频度和每次使用的时长:我们统计各站点20天中每天及累计的借车频次和还车频次,并对所有站点按累计的借车频次和还车频次分别给出它们的排序,并统计分析每次用车时长的分布情况。
其次,基于借车卡数据对使用主体区分,统计20天中各天使用公共自行车的不同借车卡(即借车人)数量,并统计数据中出现过的每张借车卡累计借车次数的分布情况。
然后,我们试图寻找所有已给站点合计使用公共自行车次数最多的一天,并按照以下几个角度探讨站点客流量特点和规律:
1)我们合理界定两站点之间的距离,在此基础上找出自行车用车的借还车站点之间(非零)最短距离与最长距离,对借还车是同一站点且使用时间在1分钟以上的借还车情况进行统计。
2)我们选择借车频次最高和还车频次最高的站点,分别统计分析其借、还车时刻的分布及用车时长的分布。
3)寻找各站点的借车高峰时段和还车高峰时段,在给出的温州市鹿城区地图上标注或列表给出高峰时段各站点的借车频次和还车频次,并对具有共同借车高峰时段和还车高峰时段的站点分别进行归类。
进而建立在前面分析的基础上,我们探讨上述统计结果携带了哪些有用的信息,并由此对目前公共自行车服务系统站点设置和锁桩数量的配置做出评价。
最后,我们试图找出公共自行车服务系统的其他运行规律,提出改进建议。

% distance_calc
clear all;
load bike_record_busy_day.mat
load station_coor.mat

station_coor = station_coor_m;

distance_mat_norm2 = zeros(181,181);
distance_mat_norm1 = zeros(181,181);
for i = 1:181
    for j = 1:181
        distance_mat_norm2(i,j) = norm(station_coor(i,:)-station_coor(j,:));
        distance_mat_norm1(i,j) = norm(station_coor(i,:)-station_coor(j,:),1);
    end
end

distance_mat = distance_mat_norm1;
[farest_0 farest_index] = max(distance_mat);


start_station0 = start_station(find(duration_float >=1));
end_station0 = end_station(find(duration_float >=1));
item_length = length(start_station0);

station_connected = zeros(181,181);
for i = 1:item_length
    i_start = start_station0(i);
    i_end = end_station0(i);
    station_connected(i_start,i_end) = station_connected(i_start,i_end) + 1;
end

distance_mat_path = distance_mat .*(station_connected>0);
[farest_real farest_real_index] = max(distance_mat_path,[],2);
nearest_real = zeros(181,1);
nearest_real_index = zeros(181,1);
for i = 1:181
    distance_mat_path_row = distance_mat_path(i,:);
    i_nz = find(distance_mat_path_row~=0);
    nz = distance_mat_path_row(i_nz);
    [nearest_real0 nearest_real_index0] = min(nz);
    if ~isempty(nearest_real0)
        nearest_real(i) = nearest_real0;
        nearest_real_index(i) = i_nz(nearest_real_index0);   
    end
end

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值