嫦娥三号软着陆轨道设计与控制策略

本文详细探讨了嫦娥三号在月球软着陆的关键问题,包括着陆准备轨道的近月点和远月点位置确定、速度控制,以及着陆过程中的各阶段控制策略。通过数学模型建立与求解,分析了误差和敏感性,旨在优化燃料消耗并确保精确着陆。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录
嫦娥三号软着陆轨道设计与控制策略摘要 1
1 问题重述 3
2 问题分析 4
2.1 问题一 4
(2)假设主减速阶段的水平路程近似为软着陆的水平路程。 4
2.2 问题二 4
2.3 问题三 5
3 模型假设 5
4 符号说明 6
5 模型的建立与求解 6
5.1 问题一 6
5.1.1 近月点和远月点处速度的确定 6
1 7
 7
 7
 7
 7
5.1.2 近月点和远月点的位置的近似确定 8
44.12  430  360  29.94N 9
或44.12  430  360  58.30N 9
5.2 问题二 9
5.2.1 着陆准备轨道的控制策略 9
5.2.2 主减速阶段的控制策略 10
 11
 11
 11
44.12  456.32  360  29.079N 13
5.2.3 快速调整阶段的控制策略 13
 14
5.2.4 粗避障阶段的控制策略 14
 15
(19) 17
5.2.5 精避障阶段的控制策略 17
5.2.6 缓速下降阶段的控制策略 19
h 19
5.3 问题三 19
5.3.1 误差分析 19
 20
  19.5119.05 100%  2.415% 19.05 20
5.3.2 敏感性分析 20
比冲ve 的灵敏度分析 21
6 应用与推广 22
6.1 模型的优点分析 22
6.1.1 问题一的优点 22
6.1.2 问题二的优点 22
6.1.3 问题三的优点 22
6.2 模型的缺点分析 23
6.3 模型的推广方向 23
7 参考文献 23
8 附录 23
附录一 主减速阶段遍历搜索控制策略 23
(1)文件名:pingdi.m(标记附件高程图中的平地) 24
end 24
(2)文件名:bizhang.m(计算粗避障高程图网格的安全信息) 25
for j=1:230 25
(3)文件名:jbzpd.m(计算精避障高程图网格的坡度信息) 26
end 26
(4)文件名:myMin.m(函数:求出矩阵的最小值,及其对应下标) 26
end 26
(5)文件名:defen.m(计算避障阶段两高程图的得分,求出最优着陆区) 27
if w(i,j)~=0 27
end 27
end 27
end 27
% for i=1:10 28
1问题重述
嫦娥三号在北京时间 2013 年 12 月 14 号在月球表面实施软着陆,其如何实现软着陆成为外界关注的焦点。嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。由于月球上没有大气,嫦娥三号无法依靠降落伞着陆,只能靠变推力发动机,才能完成软着陆的相关任务。据了解,嫦娥三号主发动机能够产生从 1500 牛到 7500 牛的可调节推力,进而对嫦娥三号实现精准控制。
嫦娥三号着陆轨道设计的基本要求为着陆准备轨道为近月点 15km,远月点 100km 的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为主减速、快速调整、粗避障、精避障、缓速下降和自由落体 6 个阶段,要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。
请建立数学模型研究下列问题:
(1)确定着陆准备轨道近月点和远月点的位置以及嫦娥三号相应速度的大小与方向。
(2)确定嫦娥三号的着陆轨道以及在 6 个阶段的最优控制策略。
(3)对设计的着陆轨道和控制策略进行相应的的误差分析和敏感性分析。

2问题分析
2.1问题一

本小题要求确定嫦娥三号着陆准备轨道的近月点和远月点的位置及嫦娥三号相应的速度大小与方向。
对于嫦娥三号在近月点和远月点处的速度大小及方向,在近月点和远月点高度已知的情况下,可依据机械能守恒和角动量守恒定律求解得到,并与题给附件中的近月点制动速度对比验证。
对于近月点和远月点的位置,可以用点在月球表面投影点的经纬度及点的高度进
行描述。近月点在月心坐标系的位置和软着陆轨道形态共同决定了着陆点的位置,由于着陆轨道的具体轨迹尚未确定,仅根据着陆点的位置并不能确定近月点和远月点的精确方位。因此,考虑能量消耗最小的基准上,可以通过设定以下理想状态对模型进行简化:
(1)假设嫦娥三号准备软着陆轨道沿月球经线绕行,软着陆过程近似于沿经线运动,运动过程中仅改变纬度大小。
(2)假设主减速阶段的水平路程近似为软着陆的水平路程。
由以上两条假设及查阅文献获取主减速阶段航程,并由此初步确定近月点和远月点的近似位置。当问题二中设计出了软着陆控制策略及着陆轨道后,通过求解在该控制策略下的水平路程,对近月点和远月点的位置进行修正,从而得到近月点和远月点的精确位置。

% 避障优化
clc,clear all
load('pingdif4.mat');
% 粗避障
x=5:10:2295;
y=5:10:2295;
q=zeros(230,230);
qu=zeros(10,10);
f1=double(f1);
for i=1:230
    for j=1:230
        qu=f1((x(i)-4):(x(i)+5),(y(j)-4):(y(j)+5));
        count=0;
        fls=[];
        for k=1:10
            for l=1:10
                if qu(k,l)==0
                    count=count+1;
                else
                    fls=[fls,qu(k,l)];
                end
            end
        end
        if count>20
            q(i,j)=-1;
        else
            q(i,j)=var(fls);
        end
    end
end
save('q1','q');

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值