目 录
摘 要 I
Abstract II
第1章 绪论 1
1.1选题背景及意义 1
1.1.1选题背景 1
1.1.2选题意义 1
1.2国内外研究现状及发展趋势 2
1.2.1国内研究现状 2
1.2.2国外研究现状 2
1.2.3发展趋势 2
1.3研究主要内容 2
第2章 通信系统的仿真建模 4
第3章 仿真模块设计 5
3.1信源模块 5
3.2信道编码模块 6
3.3调制模块 8
3.4信道模块 11
3.5盲检测模块 13
3.5.1信号预处理 13
3.5.2信号功率归一化 13
3.5.3特征提取 14
3.5.4分类识别 15
3.6 解调模块 17
3.7信道译码模块 20
3.8信宿模块 21
3.9 主函数模块 21
第4章 仿真结果分析 22
第五章 总结与展望 28
5.1总结 28
5.2展望 28
致 谢 31
参考文献 29
附录 32
1.3研究主要内容
- 信道编码与译码研究
原理阐述:深入探讨信道编码的基本原理,包括线性分组码、卷积码等,以及它们如何增强信号在传输过程中的抗干扰能力。
方法分析:分析各种信道编码方法,如奇偶校验码、汉明码等,并研究相应的译码算法,如最大似然译码、维特比译码等。 - 信道特性与噪声分析
信道建模环节致力于深入探讨多种通信信道,诸如无线信道与有线信道等,并依据这些信道的特性构建相应的数学模型。通过这些模型,我们能够深入分析信道对信号传输所产生的影响,从而优化通信效果。
在噪声特性方面,我们着重分析信道中常见的噪声类型,如高斯噪声、脉冲噪声等,并深入探究这些噪声对信号造成的干扰机制。同时,我们还致力于研究如何有效抑制这些噪声,提升信号传输的质量与稳定性。 - 调制方式盲识别技术研究
盲识别算法:研究调制方式盲识别的基本原理和算法,如基于统计特性的盲识别、基于机器学习的盲识别等。
性能评估:分析不同盲识别算法在不同调制方式下的性能表现,为实际应用提供理论依据。 - 模拟信号的数字化传输研究
采样与量化环节深入探索模拟信号数字化的核心原理和技术手段。我们研究采样定理,理解其如何确保信号在采样过程中不丢失重要信息;同时,我们探讨量化方法,分析如何将连续的模拟信号转换为离散的数字信号。
在数字信号处理方面,我们重点分析数字化信号在传输过程中的各种处理方法。这包括滤波技术,用于去除信号中的噪声和干扰;插值方法,用于提高信号的分辨率和准确性。通过这些处理手段,我们能够有效改善信号质量,确保信息传输的可靠性和有效性。 - 信号调制解调技术研究
调制原理方面,我们深入钻研了多种调制技术的内在机制,涵盖幅度调制、频率调制、相位调制等核心技术。在解调方法上,我们系统分析了各类解调算法,包括相干解调、非相干解调等,并评估了这些算法在实际应用中的效能与表现。
综合上述研究,本研究聚焦于通信系统的多个核心环节,进行了详尽的阐述与探索。这涵盖了信道编码与译码的关键技术、信道特性与噪声的深入分析、调制方式盲识别的前沿技术、模拟信号数字化传输的创新策略以及信号调制解调的先进技术。通过这些研究,我们旨在为通信技术的进一步发展与应用提供坚实的理论支撑和实践指导。
%主函数源码
%程序执行是从主函数开始,完成对其他模块的调用(信源模块、信道编码模块、调制模块、
%信道模块、解调模块、信道译码模块、信宿模块)后再返回到主函数,最后由主函数结束
%整个程序。
clc,clear,close all
G=[1 1 0 0 0 1;1 1 1 0 1 0];%G表示移位寄存器到模2加法器的连接方式
tre = poly2trellis(6,[61 72]);
r = 0.5; %编码码率
k = 1; %进制数 bpsk=1,qpsk=2,16qam=4,64qam=6
frame = signal_source(r,k);%信号10000帧,每帧1024*r*k
error = 0;
er_bit = 0;
er_zhen = zeros(1,10000);
for i = 1:10000
signal0 = encoder(frame(i,:),G); %卷积码,信道编码
signal1 = modulator(1,2,50,signal0,'bpsk_');%调制四种模式bpsk_、qpsk_、16qam、64qam
signal2 = add_noise(signal1,6);%信道 % signal2=signal1;%不使用信道
signal3 = demodulator(1,2,50,signal2,'bpsk_');%解调四种模式bpsk_、qpsk_、16qam、64qam
%signal4 = viterbi(G,1,signal3);%信道译码采用自己编写
signal4 = vitdec(signal3,tre,12,'trunc','hard');%信道译码matlab自带函数
er = signal_su(frame(i,:),signal4,r,k);%统计错误码元
error = error + er;%每帧错误码元数
er_zhen(i) = er/(1024*r*k);%每帧错误bit率
er_bit = er_bit + (1024*r*k*2-sum(signal3 == signal0));%每帧错误bit数
end
error_ma = error/(10000*1024*r*k);%总共误码率
error_bit = er_bit/(10000*1024*r*k*2);%总共误比特率
error_zhen = (10000-length(find(er_zhen==0)))/10000; %误帧率
fprintf('%12.10f\t%12.10f\t%12.10f\n',error_ma,error_bit,error_zhen)