一、选题背景
中国是世界上最大的苹果生产国和消费国,苹果种植面积和产量均占世界总量的 40%以上,在世界苹果产业中占有重要地位。苹果是我国特别是我国西部地区的重要农业支柱,也是许多贫困地区脱贫致富的重要产业。[1]在制约苹果产量与品质的众多因素中,病虫害问题一直受到广泛重视。苹果树病虫害对苹果的产量有重要影响,如果能快速准确地识别病虫害就能有针对性的对病虫害进行及时控制,将病虫害对苹果树的影响降到最低。
目前我国农作物病虫害的识别、检测和预报主要依靠于植保部门,还未建立现代化预警体系。由于防治经费与农业专业工作人员的缺乏,难以在一些偏远地区及时提供专业的技术指导,准确科学的病虫害防控手段难以及时运用到各个病虫害发生地区,容易导致灾情延误。[2]农户以家庭为单位进行生产且农作物的种植较为分散,在病虫害爆发的时候存在盲目运用农药的现象,这样不仅会加重本地区病虫害的耐药性,同时也严重危害了生态环境。
深度学习作为机器学习的一个分支,近年来在图像识别、自然语言处理等领域取得了显著进展。其强大的特征提取和学习能力使得它在图像分类、目标检测等任务中表现出了优异的性能。[3]在农业领域,深度学习技术也逐渐被应用于病虫害识别、作物生长监测等方面,并取得了初步的研究成果。苹果作为我国重要的水果之一,其叶片病虫害的识别和防治对于提高苹果产量和品质具有重要意义。然而,传统的病虫害识别方法已经难以满足现代农业生产的需求[4]。因此,本研究旨在利用深度学习技术,设计一套基于卷积神经网络算法CNN的苹果叶片病虫害识别系统,以实现苹果叶片病虫害的快速、准确识别。同时,该系统还可以为农业生产提供决策支持,帮助农民及时采取防治措施,减少病虫害对苹果产量和品质的影响。
二、国内外研究现状
随着深度学习技术的迅速发展和其在图像处理领域的广泛应用,国内外的研究各自的发展轨迹和侧重点有所不同,但均取得了显著的进展。同时,也存在一些不足。例如,目前的研究主要集中在识别准确率的提升上,而对于模型的泛化能力和实际应用中的稳定性还有待加强。此外,针对苹果树叶片病虫害的研究相对较少,需要进一步加强该领域的研究,推动苹果树叶片病虫害识别技术的快速发展和实际应用
(一)国外研究现状
在国外,基于深度学习的苹果叶片病虫害识别系统的研究起步较早,并取得了显著的进展。研究人员通过构建各种深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)等,对苹果叶片病虫害图像进行特征提取和分类识别。上个世纪后半段,随着信息技术的飞速发展,数字图像处理技术越来越成熟,理所当然的被应用与关乎民生的农业工程中;九十年代,伴随着计算机视觉技术和人工智能识别技术的逐渐完善,农业工程中开始出现结合这几类应用的趋势。 1985 年安冈善文等对植物叶片受SO2气体感染后的红外图像进行研究,发现受染叶片的红外图像能清晰地显示污染区域,认为可通过植物病叶图像来诊断植物染病情况。2019 年,SZA[6]等提出一种将扩张卷积与全局池化相结合的全局池化扩张卷积神经网络(Globalpooling dilated convolutional neural network, GPDCNN)用于黄瓜病虫害识别。GPDCNN 融合空洞卷积和全局池化的优点,与经典的卷积神经网络 AlexNet 模型相比,GPDCNN用全局池化层替换全连接层,在不增加计算复杂度的情况下增加卷积感受野。对六种常见黄瓜叶片病害数据集的实验结果表明,该模型可以有效识别黄瓜病害,识别准确率达到94.65% 。2021 年,Vaibhav Tiwari[7]提出了一种针对植物病害检测与分类的密集卷积神经网络结构。使用 27 种不同类别的六种作物进行实验