算法训练营 Day 10

1、有效的括号

#include <iostream>
#include <stack>

using namespace std;

class Solution {
public:
    bool isValid(string s) {
        if (s.size() % 2 != 0) return false; // 如果s的长度为奇数,一定不符合要求
        stack<char> st;
        for (char i : s) {
            if (i == '(') st.push(')');
            else if (i == '{') st.push('}');
            else if (i == '[') st.push(']');
                // 第三种情况:遍历字符串匹配的过程中,栈已经为空了,没有匹配的字符了,说明右括号没有找到对应的左括号 return false
                // 第二种情况:遍历字符串匹配的过程中,发现栈里没有我们要匹配的字符。所以return false
            else if (st.empty() || st.top() != i) return false;
            else st.pop(); // st.top() 与 s[i]相等,栈弹出元素
        }
        // 第一种情况:此时我们已经遍历完了字符串,但是栈不为空,说明有相应的左括号没有右括号来匹配,所以return false,否则就return true
        return st.empty();
    }
};

int main() {
    string s = "({})[]";

    Solution solution;
    cout << solution.isValid(s) << endl;
}

2、删除字符串中的所有相邻重复项

用栈去实现:

#include <iostream>
#include <stack>

using namespace std;

class Solution {
public:
    string removeDuplicates(const string& S) {
        stack<char> st;
        for (char s : S) {
            if (st.empty() || s != st.top()) {
                st.push(s);
            } else {
                st.pop(); // s 与 st.top()相等的情况
            }
        }
        string result;
        while (!st.empty()) { //当栈st不为空时
            result += st.top();
            st.pop(); // 注意这个pop()函数没有返回值
        }
        reverse (result.begin(), result.end()); // 此时字符串需要反转一下
        return result;
    }
};

int main() {
    string s = "abbaca";

    Solution solution;
    cout << solution.removeDuplicates(s) << endl;
}

直接用字符串去模拟栈的功能:

#include <iostream>

using namespace std;

class Solution {
public:
    string removeDuplicates(const string& S) {
        string result;
        for(char s : S) {
            if(result.empty() || result.back() != s) {
                result.push_back(s);
            }
            else {
                result.pop_back();
            }
        }
        return result;
    }
};

int main() {
    string s = "abbaca";

    Solution solution;
    cout << solution.removeDuplicates(s) << endl;
}

3、逆波兰表达式求值

理解什么是后缀表达式,以及前序遍历、中序遍历和后序遍历

#include <iostream>
#include <stack>

using namespace std;

class Solution {
public:
    int evalRPN(vector<string> &tokens) {
        stack<int> st;
        for (const auto & token : tokens) {
            if (token == "+" || token == "-" || token == "*" || token == "/") {
                int num1 = st.top();
                st.pop();
                int num2 = st.top();
                st.pop();
                if (token == "+") st.push(num2 + num1);
                if (token == "-") st.push(num2 - num1);
                if (token == "*") st.push(num2 * num1);
                if (token == "/") st.push(num2 / num1);
            } else {
                st.push(stoi(token)); //把字符串string转化为整数int
            }
        }
        int result = st.top();
        st.pop(); // 把栈里最后一个元素弹出(其实不弹出也没事)
        return result;
    }
};

int main() {
    vector<string> tokens = {"10", "6", "9", "3", "+", "-11", "*", "/", "*", "17", "+", "5", "+"};

    Solution solution;
    cout << solution.evalRPN(tokens) << endl;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
邓俊辉教授是计算机科学与技术领域著名的教育家和研究者。他在清华大学担任教授,并负责计算机算法与理论方向的研究和教学工作。邓俊辉教授是中国计算机学会副理事长、国际著名科技出版社Springer中国系列丛书主编、IEICE China Communications主编、Journal of Internet Technology编委、《数据结构与算法教程》作者等。 在邓俊辉教授的指导下,他办了多次Dijkstra算法训练营,旨在培养学生对于算法学习的兴趣与能力。Dijkstra算法是一种用于图论中求解最短路径问题的经典算法,具有广泛的应用领域,如路由算法、网络规划和GPS导航系统等。在训练营中,邓俊辉教授通过讲解算法的原理和思想,引导学生进行编程实践和案例分析,帮助他们深入理解Dijkstra算法的应用场景与实际解决问题的能力。 邓俊辉教授所组织的Dijkstra算法训练营受到了广大学生的欢迎和积极参与。通过训练营的学习,学生不仅可以掌握Dijkstra算法的具体实现过程,还能了解算法设计的思路和应用的局限性。在训练营中,学生还可以与同学们进行交流和合作,共同解决实际问题,促进彼此的学术成长和人际交往能力的培养。 总之,邓俊辉的Dijkstra算法训练营为学生提供了一个系统、全面学习算法知识的平台,帮助他们培养解决实际问题的能力和思维方式。通过这样的培训,学生不仅能在学术领域取得更好的成绩,还可以为将来的职业发展打下坚实的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值