统计机器学习方法 for NLP:基于LDA的主题模型

前言

最近在重刷李航老师的《统计机器学习方法》尝试将其与NLP结合,通过具体的NLP应用场景,强化对书中公式的理解,最终形成「统计机器学习方法 for NLP」的系列。这篇将介绍隐含狄利克雷分布,即LDA,并基于LDA完成对论文主题提取的任务。

隐含狄利克雷分布是什么?

隐含狄利克雷分布(Latent Dirichlet Allocation, LDA) 由戴维·布雷(David Blei)、吴恩达(对,就是那个吴恩达)和迈克尔·乔丹(Michael Jordan)于2003年提出,用来推测文档的主题分布,是一个无监督的生成模型。

首先我们认为每个文档是不同主题的集合,同时每个主题是不同单词的集合。

b12623abb42a297124397ddd9c3d2a70.jpeg

假定现在整个语料

D 共有
M 篇文档,每篇文档由
N_{d} 个单词构成,一共有
K 个主题。具体生成的步骤如下:

所以对于LDA模型,输入

M 篇文档,
N 个单词组成的词表,
K 个主题,模型将输入每个文档的主题分布以及每个主题的单词分布。

对于LDA算法的求解过程为Gibbs采样法,本文先略过,具体可以参考:文本主题模型之LDA(二) LDA求解之Gibbs采样算法

基于LDA的主题模型

下面我们将基于LDA实现一个对发表在NeurIPS上的2000篇论文,做主题模型的分析。

首先进行数据的加载和数据清洗,只保留论文的正问部分,并且移除文本中的标点符号,停用词,并统一转换成小写,转换完成的数据如下所示:

# data_words
[
    ['actor', 'critic', 'algorithms', 'risk', 'sensitive', 'mdps', 'prashanth', 'la', 'inria', 'lille', ...], 
    ['mixed', 'vine', 'copulas', 'joint', 'models', 'spike', 'counts', 'local', 'field', 'potentials', ...], 
    ['estimating', 'bayes', 'risk', 'sample', 'data', 'robert', 'snapp', 'tong', 'xu', 'computer', ...],
    ...
]

接着我们引入一个词表,并通过基础的词袋模型将文章进行表示

import gensim.corpora as corpora

# Create Dictionary
id2word = corpora.Dictionary(data_words)

# Create Corpus
texts = data_words

# Term Document Frequency
corpus = [id2word.doc2bow(text) for text in texts]

# take a look
print(corpus[0][:30])
"""
[(token_id, token_count),]
[(0, 1), (1, 1), (2, 8), (3, 5), (4, 1), (5, 12), (6, 4), (7, 31), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 2), (15, 1), (16, 4), (17, 2), (18, 1), (19, 1), (20, 2), (21, 3), (22, 2), (23, 17), (24, 54), (25, 1), (26, 1), (27, 2), (28, 3), (29, 1)]
"""

下面我们就可以进行LDA模型的训练了,设定有10个类别,这里直接使用gensim.models.LdaMulticore

import gensim

# number of topics
num_topics = 10

# Build LDA model
lda_model = gensim.models.LdaMulticore(corpus=corpus,
                                       id2word=id2word,
                                       num_topics=num_topics)

将10个类别打印出来看一下

pprint(lda_model.print_topics())
[(0,
  '0.006*"data" + 0.006*"model" + 0.005*"learning" + 0.005*"using" + '
  '0.004*"set" + 0.004*"algorithm" + 0.004*"one" + 0.004*"figure" + '
  '0.003*"two" + 0.003*"training"'),
 (1,
  '0.006*"data" + 0.006*"learning" + 0.005*"set" + 0.005*"algorithm" + '
  '0.005*"function" + 0.004*"model" + 0.004*"time" + 0.004*"problem" + '
  '0.003*"using" + 0.003*"matrix"'),
 (2,
  '0.007*"learning" + 0.006*"model" + 0.005*"data" + 0.005*"algorithm" + '
  '0.004*"time" + 0.004*"function" + 0.004*"using" + 0.004*"two" + 0.004*"one" '
  '+ 0.003*"number"'),
 (3,
  '0.007*"learning" + 0.007*"model" + 0.006*"algorithm" + 0.004*"one" + '
  '0.004*"data" + 0.004*"set" + 0.004*"using" + 0.004*"two" + 0.003*"function" '
  '+ 0.003*"results"'),
 (4,
  '0.007*"model" + 0.006*"set" + 0.005*"learning" + 0.005*"data" + '
  '0.004*"using" + 0.004*"algorithm" + 0.004*"function" + 0.004*"models" + '
  '0.003*"time" + 0.003*"training"'),
 (5,
  '0.006*"learning" + 0.006*"algorithm" + 0.005*"data" + 0.005*"one" + '
  '0.004*"model" + 0.004*"set" + 0.004*"function" + 0.004*"using" + '
  '0.004*"number" + 0.003*"time"'),
 (6,
  '0.006*"model" + 0.006*"function" + 0.006*"data" + 0.006*"algorithm" + '
  '0.005*"learning" + 0.005*"set" + 0.004*"using" + 0.004*"two" + 0.003*"one" '
  '+ 0.003*"number"'),
 (7,
  '0.007*"model" + 0.006*"data" + 0.006*"learning" + 0.006*"algorithm" + '
  '0.004*"models" + 0.004*"set" + 0.004*"function" + 0.004*"one" + '
  '0.004*"using" + 0.003*"time"'),
 (8,
  '0.007*"learning" + 0.006*"model" + 0.005*"data" + 0.004*"algorithm" + '
  '0.004*"using" + 0.004*"set" + 0.004*"used" + 0.003*"time" + 0.003*"one" + '
  '0.003*"neural"'),
 (9,
  '0.006*"model" + 0.005*"data" + 0.005*"set" + 0.005*"algorithm" + '
  '0.005*"learning" + 0.004*"function" + 0.004*"using" + 0.004*"problem" + '
  '0.004*"time" + 0.003*"figure"')]

更进一步我们可以采用pyldavis进行进一步交互式的分析,更好看出topic自身的特点以及topic之间的关系

import pyLDAvis.gensim_models
import pyLDAvis

# Visualize the topics
pyLDAvis.enable_notebook()

LDAvis_prepared = pyLDAvis.gensim_models.prepare(lda_model, corpus, id2word)

7111cceec0d41b947e85a96296b33bd0.jpeg


参考

towardsdatascience.com/

星环科技:深入机器学习系列11-隐式狄利克雷分布

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
在现有省、市港口信息化系统进行有效整合基础上,借鉴新 一代的感知-传输-应用技术体系,实现对码头、船舶、货物、重 大危险源、危险货物装卸过程、航管航运等管理要素的全面感知、 有效传输和按需定制服务,为行政管理人员和相关单位及人员提 供高效的管理辅助,并为公众提供便捷、实时的水运信息服务。 建立信息整合、交换和共享机制,建立健全信息化管理支撑 体系,以及相关标准规范和安全保障体系;按照“绿色循环低碳” 交通的要求,搭建高效、弹性、高可扩展性的基于虚拟技术的信 息基础设施,支撑信息平台低成本运行,实现电子政务建设和服务模式的转变。 实现以感知港口、感知船舶、感知货物为手段,以港航智能 分析、科学决策、高效服务为目的和核心理念,构建“智慧港口”的发展体系。 结合“智慧港口”相关业务工作特点及信息化现状的实际情况,本项目具体建设目标为: 一张图(即GIS 地理信息服务平台) 在建设岸线、港口、港区、码头、泊位等港口主要基础资源图层上,建设GIS 地理信息服务平台,在此基础上依次接入和叠加规划建设、经营、安全、航管等相关业务应用专题数据,并叠 加动态数据,如 AIS/GPS/移动平台数据,逐步建成航运管理处 "一张图"。系统支持扩展框架,方便未来更多应用资源的逐步整合。 现场执法监管系统 基于港口(航管)执法基地建设规划,依托统一的执法区域 管理和数字化监控平台,通过加强对辖区内的监控,结合移动平 台,形成完整的多维路径和信息追踪,真正做到问题能发现、事态能控制、突发问题能解决。 运行监测和辅助决策系统 对区域港口与航运业务日常所需填报及监测的数据经过科 学归纳及分析,采用统一平台,消除重复的填报数据,进行企业 输入和自动录入,并进行系统智能判断,避免填入错误的数据, 输入的数据经过智能组合,自动生成各业务部门所需的数据报 表,包括字段、格式,都可以根据需要进行定制,同时满足扩展 性需要,当有新的业务监测数据表需要产生时,系统将分析新的 需求,将所需字段融合进入日常监测和决策辅助平台的统一平台中,并生成新的所需业务数据监测及决策表。 综合指挥调度系统 建设以港航应急指挥中心为枢纽,以各级管理部门和经营港 口企业为节点,快速调度、信息共享的通信网络,满足应急处置中所需要的信息采集、指挥调度和过程监控等通信保障任务。 设计思路 根据项目的建设目标和“智慧港口”信息化平台的总体框架、 设计思路、建设内容及保障措施,围绕业务协同、信息共享,充 分考虑各航运(港政)管理处内部管理的需求,平台采用“全面 整合、重点补充、突出共享、逐步完善”策略,加强重点区域或 运输通道交通基础设施、运载装备、运行环境的监测监控,完善 运行协调、应急处置通信手段,促进跨区域、跨部门信息共享和业务协同。 以“统筹协调、综合监管”为目标,以提供综合、动态、实 时、准确、实用的安全畅通和应急数据共享为核心,围绕“保畅通、抓安全、促应急"等实际需求来建设智慧港口信息化平台。 系统充分整合和利用航运管理处现有相关信息资源,以地理 信息技术、网络视频技术、互联网技术、移动通信技术、云计算 技术为支撑,结合航运管理处专网与行业数据交换平台,构建航 运管理处与各部门之间智慧、畅通、安全、高效、绿色低碳的智 慧港口信息化平台。 系统充分考虑航运管理处安全法规及安全职责今后的变化 与发展趋势,应用目前主流的、成熟的应用技术,内联外引,优势互补,使系统建设具备良好的开放性、扩展性、可维护性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nghuyong

您的鼓励是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值