【Datewhale一起吃瓜 Task2】啃瓜第三章

线性模型的关键在于确定权重w和截距b,适用于连续数值的数据。通过最小化均方误差使用最小二乘法找到最佳参数。偏导数用于优化过程中,确保参数达到极小值,避免误差最大化。在实际应用中,可能结合正则化来选择最佳模型。
摘要由CSDN通过智能技术生成

线性模型

在这里插入图片描述

任务:找出一条线能够对数据进行划分或预测趋势
在这里插入图片描述

关键:找到合适的w和b

更适合于连续性的数值,如果数据是离散的如色泽是青绿色,我们需要对特征值进行编码
首先我们考虑是否是有序的
若有序,如身高的高中低,我们可以编为1,0.5,0
若无序,如一共有三种色泽,某种色泽是青绿色,我们可以标为[0 1 0]

如何找到合适的 w和b?

均方误差最小化,利用最小二乘法找到一组合适的w和b使得均方误差最小

在这里插入图片描述

偏导为什么可以?

在我们求最佳参数的过程中,参数在不断变化,我们对其进行偏导,并让其等于0,这时候参数不再变化,他可能是极大值,也可能是极小值。而均方误差最大值是无穷大,因此极大值是不存在的,求得的结果只可能是在极小值上,因此我们求出的结果,即是均方误差最小的时候,就是我们想要的最佳参数

推广

在这里插入图片描述
在这里插入图片描述
根据具体情况可能有以下两种结果:
在这里插入图片描述
若此时根据归纳偏好,或者引入正则化,选出最佳的参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有理想、有本领、有担当的有志青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值