基于k6和python进行自动化性能测试

摘要:在性能测试中,达到相应的性能指标对于一个软件来说十分重要,在本文中,将介绍一种现代化性能测试工具k6。

当我们开发完成一个应用程序时,往往需要对其进行性能测试,以帮助我们更好的优化程序以及发现程序中的一些bug。在性能测试中,达到相应的性能指标对于一个软件来说十分重要,在本文中,将介绍一种现代化性能测试工具k6。

k6是一个开源工具,基于JavaScript可以编写k6的测试脚本,测试Web应用程序以及API的性能,支持HTTP等多种协议,可以很好地模拟各种高负载场景,充分验证程序稳定性和性能。k6支持Linux、MacOS等多个平台,通过k6官网根据提示即可在各个平台快速安装k6,终端输入k6 version出现如下显示说明安装成功。

以下是一个简单的k6测试脚本,通过k6的HTTP API模拟Get请求,并且休眠一秒钟:K

  1. import http from 'k6/http';

  2. import { sleep } from 'k6';

  3. export default function () {

  4. http.get('https://test-api.com');

  5. sleep(1);

  6. }

通过执行下面这行代码,运行脚本,即可对服务完成测试。

k6 run test-script.js

k6提供了丰富的功能,以下是k6常用的一些API,具体可以参考官网文档介绍:

  1. - http.get(url, [options]):发送GET请求。

  2. - http.post(url, body, [options]):发送POST请求。

  3. - check(res, checks):检查响应是否符合预期。

  4. - group(name, func):将一组请求分组并统计性能指标。

  5. - sleep(duration):休眠指定的时间。

k6的测试结果包括以下一些指标,可以根据这些指标,更好的优化程序。

  1. - VUs:虚拟用户的数量。

  2. - Iterations:迭代次数。

  3. - RPS:每秒钟的请求数。

  4. - Duration:测试持续时间。

  5. - Data Sent/Received:发送和接收的数据量。

  6. - Checks:检查的数量。

  7. - Status codes:响应状态码的数量。

  8. - Errors:错误的数量。

  9. - Latency distribution:延迟分布。

通过Python和k6你可以更加高效的完成符合自己要求的自动化测试,Python可以提供非常多的工具库,用来收集处理k6返回的结果。 我们可以编写以下k6测试脚本,并且通过Python去执行它,相关注释我已经标注出来,在handleSummary函数中,我们可以通过metrics来获取各种测试信息,具体如代码所示,可以参考官网关于metrics的介绍,同时自定义环境变量的使用也十分方便,可以参考代码中的使用方式。

  1. import http from 'k6/http';

  2. import { check, sleep} from 'k6';

  3. import {Rate} from 'k6/metrics';

  4. export default function() {

  5. #post请求所需要的body体

  6. let requestBody = {

  7. "xxx":[

  8. "xxxxx"

  9. ],

  10. "xxxx": __ENV.MyVar # MyVar为自定义的环境变量,可以通过__ENV调用,在执行脚本时可直接通过MyVar=xxx传值

  11. };

  12. #url

  13. const url = 'http://example.com';

  14. const payload = JSON.stringify(requestBody);

  15. const params = {

  16. headers: {

  17. 'Content-Type': 'application/json',

  18. },

  19. timeout: '100s' #每个请求的超时时间

  20. };

  21. let res = http.post(url, payload, params);

  22. #检测结果是否是200OK

  23. check(res, { 'status is 200': (r) => r.status === 200 });

  24. }

  25. export function handleSummary(data) {

  26. #通过data.metrics中的字段可以获取你想要的一些信息,例如每个请求的持续时间和吞吐量

  27. const time = `${data.metrics.http_req_duration.values.avg.toFixed(3)}`;

  28. const rps = `${data.metrics.http_reqs.values.rate.toFixed(3)}`;

  29. const res = `${time} ${rps}`;

  30. console.log(res); # 利用console.log可以将内容打印到控制台

  31. return {stdout : res}; #输出到标准输出

  32. }

如下是一个Python代码示例,相关代码已经注释,通过Python中的subprocess模块执行k6脚本,并且捕获k6脚本的输出,通过pandas库进行整理输出到excel中。还可以通过argparse库解析命令行参数传入k6脚本中,更加灵活,高效。

  1. # -*- coding: utf-8 -*-

  2. import subprocess

  3. from alive_progress import alive_bar # 非常丰富的进度条工具库

  4. from tqdm import tqdm # 进度条工具库

  5. import pandas as pd # 可以用来处理文本excel,csv等

  6. from collections import OrderedDict

  7. import argparse # 用来解析命令行参数

  8. import time

  9. print('测试时间 : ', time.strftime('%b %d %Y %H:%M:%S', time.gmtime(time.time())))

  10. print("************开始测试啦! 祈祷不出错!**************")

  11. # 需要测试的测试语句集合

  12. test_examples = [

  13. "aaaaaaa",

  14. "bbbbbbb",

  15. "ccccccc"

  16. ]

  17. dataMap = {'test': test_examples}

  18. parser = argparse.ArgumentParser()

  19. parser.add_argument("-d", default="60s", help="duration time", dest="duration_time") #解析命令行参数,控制测试时间

  20. args = parser.parse_args()

  21. print("每条语句测试时间 : ", args.duration_time)

  22. vus = ['10', '20', '30', '40'] # 并发数集合 ,分别测试并发数为10,20,30,40的场景

  23. cols_name = ['1-avg/ms', '1-rps/s', '10-avg/ms', '10-rps/s','20-avg/ms', '20-rps/s','50-avg/ms', '50-rps/s'] # excel的列名

  24. # 循环测试,可以将多个需要测试的语句集合放入到dataMap中

  25. for (name, data) in dataMap.items():

  26. print("当前测试的项目为 :", name)

  27. res = OrderedDict()

  28. res['test_examples'] = []

  29. for n in cols_name:

  30. res[n] = []

  31. df = pd.DataFrame(res)

  32. excel_name = name + ".xlsx"

  33. df.to_excel(excel_name, index=False)

  34. for query in data:

  35. print("当前测试语句为 :", query)

  36. origin = pd.read_excel(excel_name)

  37. with alive_bar(len(vus)) as bar:

  38. temp_dict = {}

  39. temp_dict['test_examples'] = query

  40. for vu in vus:

  41. keyRps = vu + '-rps/s'

  42. keyTime = vu + '-avg/ms'

  43. MyVar='MyVar=' + query

  44. #通过Popen执行k6脚本,并且捕获它的标准输出

  45. process = subprocess.Popen(['k6', 'run', '--quiet', 'script.js', '--env', MyVar, '--vus', vu, '--duration', args.duration_time], stdout=subprocess.PIPE, stderr=subprocess.PIPE)

  46. result = process.stdout.read()

  47. temp = result.split()

  48. temp_dict[keyTime] = temp[0].decode();

  49. temp_dict[keyRps] = temp[1].decode();

  50. print("并发:", vu, temp[0].decode(), temp[1].decode())

  51. bar()

  52. #将脚本输出写到excel

  53. save_data = origin.append(temp_dict, ignore_index=True)

  54. save_data.to_excel(excel_name, index=False)

执行此Python脚本,可以得到类似以下输出:

1、k6官网文档链接:https://k6.io/docs/

2、k6安装链接:https://k6.io/docs/get-started/installation/

行动吧,在路上总比一直观望的要好,未来的你肯定会感 谢现在拼搏的自己!如果想学习提升找不到资料,没人答疑解惑时,请及时加入扣群: 320231853,里面有各种软件测试+开发资料和技术可以一起交流学习哦。

最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值