本篇文章参考自https://blog.csdn.net/hu413031273/article/details/51329514
TSP问题(Travelling Salesman Problem)又译为旅行推销员问题、货郎担问题,即假设有一个旅行商人要拜访n个城市,从某个城市出发,每个城市只能访问一次且最后回到出发城市,问该推销员应如何选择路线,才能使总的行程最短?
使用动态规划解决该问题的策略为:
- 易知从哪个城市出发其最短路径都是一样的,故假设从城市1出发。假设已经经过了几个城市,我们需要记录此时位于的城市,以及未访问的城市的集合。
- 以dp[{V}][init]表示从init点开始,要经过集合V中所有点的距离。dis[init][i]表示城市init到城市i的距离。
其状态转移方程为dp[{V}][init]=min(dp[{V}][init], dp[{V-i}][i]+dis[init][i])。即假设处于城市init,欲前往下一个城市i,如果在城市i的状态dp[{V-i}][i]加上城市init到城市i的距离小于当前最小值,则前往城市i。 - 我们怎么存储未访问的城市的集合?一个方法是以二进制01表示该城市是否被访问过,如s=111110,城市1对应的位为0,其他城市对应的位为1,则表示城市6到城市2都还未访问,城市1已访问过。例如在出发点1时,要判断城市2是否访问过,若s&(1<<1)为1则表示城市2未被访问过,若去城市2,则集合V变为s&(~(1<<1))。
- 以数组path