[高考数学]恒成立问题

本文探讨了高中数学中恒成立问题的解决方法,特别是通过分离参数法来确定变量的取值范围。举例说明了如何解决不等式在特定区间或整个实数域上恒成立的问题,如 x2+ax+1>0 和 x2+ax+5>0 等,并提供了详细的解题步骤和解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[高考数学] 恒成立问题

问题例子

例:不等式 x 2 + a x + 1 > 0 x^2+ax+1>0 x2+ax+1>0 R R R 上恒成立,求 a a a 的取值范围
解:对二次函数了解足够深入的话,可以想象出图像应该整体在 y = 0 y=0 y=0上方,只需 Δ < 0 \Delta < 0 Δ<0 a 2 − 4 < 0 a^2 -4 < 0 a24<0, 然后我们可以很轻易的解出 a a a 的范围为 ( − 2 , 2 ) (-2,2) (2,2)

问题的抽象

对于任何恒成立的问题,我们均可以看成一种形式: f ( x , a ) > 0 f(x,a) > 0 f(x,a)>0,在集合A上恒成立。

方法

出于篇幅和时间,本篇只讲 “分离参数法”

试想一下,如果问题可以转述为:不等式 a > f ( x ) a>f(x) a>f(x) [ 1 , 2 ] [1,2] [1,2] 上恒成立,求 a a a 的范围。

那么最后 a a a 的解集就是 a > f ( x ) ( m a x ) a>f(x)_(max) a>f(x)(max)
想一下,为什么?

解释

我比你最大值大,不就一直比你大吗?就是恒成立了。

例题

( 1 ) : x 2 + a x + 5 > 0 在 [ 1 , 2 ] 上 恒 成 立 , 求 a 的 取 值 范 围 (1) : x^2 +ax +5 > 0 在[1,2]上恒成立,求a 的取值范围 (1):x2+ax+5>0[1,2]a
( 2 ) : x 2 + ( a − 5 ) x + 7 > 0 在 R 上 恒 成 立 , 求 a 的 取 值 范 围 (2) : x^2 +(a-5)x +7 > 0 在R上恒成立,求a 的取值范围 (2):x2+(a5)x+7>0Ra
( 3 ) : x 2 + 1 + a x > 0 在 ( 0 , + ∞ ) 上 恒 成 立 , 求 a 的 取 值 范 围 (3) :\sqrt{x^2+1} +ax>0 在(0,+\infty)上恒成立,求a 的取值范围 (3):x2+1 +ax>0(0,+)a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值