问题例子
例:不等式
x
2
+
a
x
+
1
>
0
x^2+ax+1>0
x2+ax+1>0 在
R
R
R 上恒成立,求
a
a
a 的取值范围
解:对二次函数了解足够深入的话,可以想象出图像应该整体在
y
=
0
y=0
y=0上方,只需
Δ
<
0
\Delta < 0
Δ<0 即
a
2
−
4
<
0
a^2 -4 < 0
a2−4<0, 然后我们可以很轻易的解出
a
a
a 的范围为
(
−
2
,
2
)
(-2,2)
(−2,2)
问题的抽象
对于任何恒成立的问题,我们均可以看成一种形式: f ( x , a ) > 0 f(x,a) > 0 f(x,a)>0,在集合A上恒成立。
方法
出于篇幅和时间,本篇只讲 “分离参数法”。
试想一下,如果问题可以转述为:不等式 a > f ( x ) a>f(x) a>f(x)在 [ 1 , 2 ] [1,2] [1,2] 上恒成立,求 a a a 的范围。
那么最后
a
a
a 的解集就是
a
>
f
(
x
)
(
m
a
x
)
a>f(x)_(max)
a>f(x)(max)
想一下,为什么?
解释
我比你最大值大,不就一直比你大吗?就是恒成立了。
例题
(
1
)
:
x
2
+
a
x
+
5
>
0
在
[
1
,
2
]
上
恒
成
立
,
求
a
的
取
值
范
围
(1) : x^2 +ax +5 > 0 在[1,2]上恒成立,求a 的取值范围
(1):x2+ax+5>0在[1,2]上恒成立,求a的取值范围
(
2
)
:
x
2
+
(
a
−
5
)
x
+
7
>
0
在
R
上
恒
成
立
,
求
a
的
取
值
范
围
(2) : x^2 +(a-5)x +7 > 0 在R上恒成立,求a 的取值范围
(2):x2+(a−5)x+7>0在R上恒成立,求a的取值范围
(
3
)
:
x
2
+
1
+
a
x
>
0
在
(
0
,
+
∞
)
上
恒
成
立
,
求
a
的
取
值
范
围
(3) :\sqrt{x^2+1} +ax>0 在(0,+\infty)上恒成立,求a 的取值范围
(3):x2+1+ax>0在(0,+∞)上恒成立,求a的取值范围