[高考数学]恒成立问题

本文探讨了高中数学中恒成立问题的解决方法,特别是通过分离参数法来确定变量的取值范围。举例说明了如何解决不等式在特定区间或整个实数域上恒成立的问题,如 x2+ax+1>0 和 x2+ax+5>0 等,并提供了详细的解题步骤和解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[高考数学] 恒成立问题

问题例子

例:不等式 x 2 + a x + 1 > 0 x^2+ax+1>0 x2+ax+1>0 R R R 上恒成立,求 a a a 的取值范围
解:对二次函数了解足够深入的话,可以想象出图像应该整体在 y = 0 y=0 y=0上方,只需 Δ < 0 \Delta < 0 Δ<0 a 2 − 4 < 0 a^2 -4 < 0 a24<0, 然后我们可以很轻易的解出 a a a 的范围为 ( − 2 , 2 ) (-2,2) (2,2)

问题的抽象

对于任何恒成立的问题,我们均可以看成一种形式: f ( x , a ) > 0 f(x,a) > 0 f(x,a)>0,在集合A上恒成立。

方法

出于篇幅和时间,本篇只讲 “分离参数法”

试想一下,如果问题可以转述为:不等式 a > f ( x ) a>f(x) a>f(x) [ 1 , 2 ] [1,2] [1,2] 上恒成立,求 a a a 的范围。

那么最后 a a a 的解集就是 a > f ( x ) ( m a x ) a>f(x)_(max) a>f(x)(max)
想一下,为什么?

解释

我比你最大值大,不就一直比你大吗?就是恒成立了。

例题

( 1 ) : x 2 + a x + 5 > 0 在 [ 1 , 2 ] 上 恒 成 立 , 求 a 的 取 值 范 围 (1) : x^2 +ax +5 > 0 在[1,2]上恒成立,求a 的取值范围 (1):x2+ax+5>0[1,2]a
( 2 ) : x 2 + ( a − 5 ) x + 7 > 0 在 R 上 恒 成 立 , 求 a 的 取 值 范 围 (2) : x^2 +(a-5)x +7 > 0 在R上恒成立,求a 的取值范围 (2):x2+(a5)x+7>0Ra
( 3 ) : x 2 + 1 + a x > 0 在 ( 0 , + ∞ ) 上 恒 成 立 , 求 a 的 取 值 范 围 (3) :\sqrt{x^2+1} +ax>0 在(0,+\infty)上恒成立,求a 的取值范围 (3):x2+1 +ax>0(0,+)a

内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值