能转化为恒成立能成立类命题的高中数学素材

恒成立和能成立命题是高中数学中一个非常重要的知识点,考查频次很高,由于借助这个命题能很好的考查学生的知识理解掌握能力,还能考查学生遇到新问题时的转化化归能力,考查学生思维的灵活性,所以是高考命题人的最爱之一,需要引起学生的广泛关注。而且其涵盖的数学素材很广,一定要认真学习和掌握。

一、恒成立能成立模型Cnblogs_sxmx01.bmp

$\fbox{不等式恒成立模型}$
$A\leq f(x)$在区间$[m,n]$上恒成立,等价于$A\leq f(x)_{min}$;$A\ge f(x)$在区间$[m,n]$上恒成立,等价于$A\ge f(x)_{max}$;
说明:上述模型是最精简的模型,具体题目中一般不是这样的,需要我们做相应的转化化归。 比如$ln(x+1)+\cfrac{a}{x+2}>1$对任意$x>0$成立,则可以转化为$a>(x+2)[1-ln(x+1)]$恒成立,
比如$x^2+e^x+a\ge 0$对任意实数恒成立,可以化归为$a\ge -x^2-e^x$,这样就都属于上述类型。
$\fbox{不等式能成立[或有解]模型}$ $A\leq f(x)$在区间$[m,n]$上能成立[或有解],等价于$A\leq f(x)_{max}$;$A\ge f(x)$在区间$[m,n]$上能成立[或有解],等价于$A\ge f(x)_{min}$;
说明:同上,碰到具体题目可能需要我们进行相应的转化化归,才会变形为上述的形式。 $\fbox{方程有解模型}$ $A= f(x)$在区间$[m,n]$上有解,等价于$A\in [f(x)_{min},f(x)_{max}]的值域$; 故关键是求解函数$f(x)$的值域 说明:同上,碰到具体题目可能需要我们进行相应的转化化归,才会变形为上述的形式。

二、哪些问题或素材都能转化为恒成立命题?Cnblogs_bxjq02.bmp

⒈明确以恒成立给出的,比如: 函数$f(x)=x^2-ax+2\ge 0$ 在区间$[2,5]$上恒成立,求参数$a$的取值范围。 分析:用分离参数法,转化为$a\leq x+\cfrac{2}{x}=g(x)$在区间$[2,5]$上恒成立,即$a\leq g(x)_{min}=3$; 或二次函数数形结合法,针对对称轴和区间的位置关系分类讨论求解。 ⒉以集合、子集形式或定义域的形式给出的,比如解集为$R$; 引例1:不等式$x^2-ax+2\ge 0$的解集为$R$,求参数$a$的取值范围。 分析:由$\Delta=a^2-8 \leq 0$求解得到$a\in [-2\sqrt{2},2\sqrt{2}]$ 引例2:函数$f(x)=\sqrt{2^{x^2-2ax+a}-1}$的定义域是$R$,求参数$a$的取值范围$[0,1]$。 分析:由$2^{x^2-2ax+a}-1\ge0$得到,$x^2-2ax+a^2\ge 0$的解集为$R$,求解得到$a\in [0,1]$ 引例3:函数$f(x)=|x-2|+|x-a|$,$f(x)<2$的解集为$A$,且有$(2,3)\subseteq A$,求参数$a$的取值范围$[2,4)$。 分析:由题可知,$|x-2|+|x-a|<2$在$(2,3)$上恒成立, 即$x-2+|x-a|<2$在$(2,3)$上恒成立, 即$|x-a|<4-x$在$(2,3)$上恒成立, 即$x-4 < x-a < 4-x$在$(2,3)$上恒成立, 即$2x-4< a <4$在$(2,3)$上恒成立, 即$(2x-4)_{max}< a <4$在$(2,3)$上恒成立, 即$2\leq a <4$。 ⒊以简单逻辑用语给出的,比如真命题,假命题,或充要条件,全称命题 引例1:对任意的$x\in R$,命题:$x^2-ax+2< 0$为假命题,求参数$a$的取值范围。 分析:即$x^2-ax+2\ge 0$为真命题,也即$x^2-ax+2\ge 0$恒成立; 引例2:(2017湖南郴州二模)若命题“$P:\exists x_0\in R,2^{x_0}-2\leq a^2-3a$”是假命题,则实数$a$的取值范围是__________。 等价命题:命题“$\neg P:\forall x\in R,2^x-2> a^2-3a$”是真命题,则实数$a$的取值范围是__________。 分析:由题目可知,命题“$\neg P:\forall x\in R,2^x-2> a^2-3a$”是真命题,即$2^x-2> a^2-3a$对$\forall x\in R$恒成立, 故只需求$(2^x-2)_{min}$,而$2^x-2>-2$,则有$-2\ge a^2-3a$,即$a^2-3a+2\leq 0$, 解得$1\leq a\leq 2$,故实数$a$的取值范围是$[1,2]$。 引例3:若任意$x\in[0,\cfrac{\pi}{8}]$,$tanx\leq m$是真命题,求实数$m$的最小值$(\sqrt{2}-1)$。 ⒋以不等式无解的形式给出的,比如 已知函数$f(x)=log_a(a^{2x}+t)$,其中$a>0,a\neq 1$, (1)当$a=2$时,若$f(x) < x$无解,求$t$的取值范围; 分析:当$a=2$时,$f(x)=log_2(4^x+t)$,定义域为$R$, 则由$f(x)< x$无解,可知不等式$f(x) < x$的解集为$x\in \varnothing$, 则不等式$f(x)\ge x$的解集为$x\in R$,即$f(x)\ge x$在$R$上恒成立, 即$log_2(4^x+t)\ge x=log_22^x$在$R$上恒成立, 故$4^x+t\ge 2^x$在$R$上恒成立,分离参数得到, $t\ge 2^x-4^x$在$R$上恒成立, 令$2^x=k >0$,则$2^x-4^x=k-k^2=g(k)(k >0)$,需要求$g(k)_{max}$, 又$g(k)=-k^2+k=-(k-\cfrac{1}{2})^2+\cfrac{1}{4}$, 故$g(k)_{max}=g(\cfrac{1}{2})=\cfrac{1}{4}$, 故$t\ge \cfrac{1}{4}$,即$t\in [\cfrac{1}{4},+\infty)$。 ⒌以不等式形式给出的,比如 引例:【2018高考Ⅱ卷文科23题】设函数$f(x)=5-|x+a|-|x-2|$, (1)当$a=1$时,求不等式$f(x)\ge 0$的解集。 分析:分区间讨论法,解集为$[-2,3]$,详解过程略。 (2)若$f(x)\leq 1$,求$a$的取值范围。 分析:本题目没有给定解集$D$,却需要求参数$a$的取值范围,那我们可以这样想, 对于未知解集$D$内的任意一个$x$,必然满足$f(x)\leq 1$,即对解集$D$而言,不等式$f(x)\leq 1$恒成立, 即$5-|x+a|-|x-2|\leq 1$恒成立,即$|x+a|+|x-2|\ge 4$恒成立, 这样难点就转换为求$(|x+a|+|x-2|)_{min}$, 又$|x+a|+|x-2|\ge |(x+a)-(x-2)|=|a+2|$, 即$(|x+a|+|x-2|)_{min}=|a+2|$, 即$|a+2|\ge 4$,则$a+2\ge 4$或$a+2\leq -4$ 解得$a\leq -6$或$a\ge 2$。 ⒍在某个区间$D$上函数单调递增,比如 函数$f(x)=x^2-ax+2$ 在区间$[2,5]$上单调递增,求参数$a$的取值范围。 法1:二次函数法,针对对称轴和区间$[2,5]$的位置关系分类讨论求解; 法2:导数法,则有$f'(x)=2x-a\ge 0$对$x\in [2,5]$恒成立,即$a\leq 2x$对$x\in [2,5]$恒成立; 即$a\leq (2x)_{min}$,当$2\leq x\leq 5$时,$ (2x)_{min}=4$,故$a\leq 4$ ⒎以证明题形式给出的,比如 求证:$e^x\ge x+1$ 证明方法 ⒏以数学概念或函数性质转化而成的恒成立, 引例:已知函数$f(x)=x^2+\cfrac{a}{x}$,定义域是$x\neq 0$,下列说法正确的是【】 A,存在$a\in R$,使得函数$f(x)$为奇函数;B,任意$a\in R$,使得函数$f(x)$为偶函数; C,任意$a>0$,使得函数$f(x)$在$(-\infty,0)$上为减函数;D,存在$a>0$,使得函数$f(x)$在$(0,+\infty)$上为减函数; 分析: A选项,存在$a\in R$,使得函数$f(x)$为奇函数;若此选项正确,存在实数$a$,则对任意$x\neq 0$,$f(-x)=-f(x)$要恒成立, 即$x^2-\cfrac{a}{x}=-x^2-\cfrac{a}{x}$要恒成立,即$-x^2=x^2$,不是对任意$x\neq 0$都恒成立的,故A选项错误; B选项,任意$a\in R$,使得函数$f(x)$为偶函数;若此选项正确,任意实数$a$,则对任意$x\neq 0$,$f(-x)=f(x)$要恒成立, 即$x^2-\cfrac{a}{x}=x^2+\cfrac{a}{x}$要恒成立,即$\cfrac{2a}{x}=0$,不是对任意$x\neq 0$都恒成立的,故B选项错误; C选项,任意$a>0$,使得函数$f(x)$在$(-\infty,0)$上为减函数;若此选项正确,对任意实数$a>0$, 则对任意$x< 0$,$f'(x)=2x-\cfrac{a}{x^2}<0$恒成立,即函数$f(x)$在$(-\infty,0)$上为减函数,故C选项正确; D选项,存在$a>0$,使得函数$f(x)$在$(0,+\infty)$上为减函数;若此选项正确,存在实数$a>0$,则对任意$x>0$, 必须$f'(x)=2x-\cfrac{a}{x^2}=\cfrac{2x^3-a}{x^2}<0$要恒成立,但是并不能保证$f'(x)<0$恒成立, 即函数$f(x)$在$(-\infty,0)$上为减函数是错误的,故D选项错误;综上,正确选项为C。 ⒐以不等式的解集包含某个区间的形式给出; 引例:【2017全国卷1文科理科第23题高考真题选修4-5不等式选讲】已知函数$f(x)=-x^2+ax+4$,$g(x)=|x+1|+|x-1|$, (2)若不等式$f(x)\ge g(x)$的解集包含$[-1,1]$,求$a$的取值范围。 【法1】:数形结合法,函数$f(x)=-x^2+ax+4$,对称轴为$x=\cfrac{a}{2}$,开口向下,由有图可知,要使得不等式$f(x)\ge g(x)$的解集包含$[-1,1]$, 只需要满足条件$\begin{cases}f(-1)\ge 2\\f(1)\ge 2\end{cases}$,解得$\begin{cases}a\leq 1\\a\ge -1\end{cases}$,故$a$的取值范围为$[-1,1]$。 【法2】:转化为不等式恒成立求解,当$x\in [-1,1]$时,$g(x)=2$, 由题目可知,不等式$f(x)\ge 2$的解集包含$[-1,1]$,即当$x\in [-1,1]$时,$f(x)\ge 2$恒成立,即$-x^2+ax+2\ge 0$恒成立, 令$h(x)=-x^2+ax+2$,则只需满足条件$\begin{cases}h(-1)\ge 0\\h(x)\ge 0\end{cases}$,解得$-1\leq a \leq 1$,故$a$的取值范围为$[-1,1]$。 【法3】:恒成立+分离参数法 当转化得到$x\in [-1,1]$时,$f(x)\ge 2$恒成立,即$-x^2+ax+2\ge 0$恒成立,接下来准备分离参数: $1^。$当$x=0$时,代入得到$2\ge 0$,即$a\in R$; $2^。$当$x<0$时,由$ax\ge x^2-2$分离参数得到$a\leq \cfrac{x^2-2}{x}=x-\cfrac{2}{x}$, 令$h(x)=x-\cfrac{2}{x}$,$h(x)$在区间$(-1,0)$上单调递增, 图像说明, 故$h(x)_{min}\rightarrow h(-1)=1$即$a\leq 1$; $3^。$当$x>0$时,由$ax\ge x^2-2$分离参数得到$a\ge \cfrac{x^2-2}{x}=x-\cfrac{2}{x}$, 令$h(x)=x-\cfrac{2}{x}$,$h(x)$在区间$(0,1)$上单调递增,故$h(x)_{max}\rightarrow h(1)=-1$即$a\ge -1$; 综上所述,由于三种情形下都要成立,故需要取其交集得到$a$的取值范围为$[-1,1]$。 ⒑一个恒成立问题用符号法则裂变成两个恒成立问题; 已知二次函数$f(x)=ax^2+bx+c$的图象经过点$(-2,0)$,且不等式$2x≤f(x)≤\frac{1}{2}{x}^{2}+2$对一切实数$x$都成立。 (I)求函数$f(x)$的解析式; (Ⅱ)若对任意$x∈[-1,1]$,不等式$f(x+t)<f(\frac{x}{3})$恒成立,求实数$t$的取值范围. 解析:(I)由题意得:$f(-2)=4a-2b+c=0①$, 因为不等式$2x≤f(x)≤\frac{1}{2}x^2+2$对一切实数x都成立, 令$x=2$,得:$4≤f(x)≤4$,所以$f(2)=4$,即$4a+2b+c=4②$ 由①②解得:$b=1,且c=2-4a,$ 所以$f(x)=ax^2+x+2-4a$, 由题意得:$f(x)-2x≥0$且$f(x)-\frac{1}{2}x^2-2≤0$对$x∈R$恒成立, 即$\begin{cases}ax^2-x+2-4a\ge 0③\\(a-\frac{1}{2})x^2+x-4a\leq 0 \end{cases}$对$x\in R$恒成立, 对③而言,由$a>0$且$\Delta =1-4a(2-4a)\leq 0$,得到$(4a-1)^2\leq 0$,所以$a=\frac{1}{4}$,经检验满足, 故函数$f(x)$的解析式为$f(x)=\frac{1}{4}x^2+x+1$。 (Ⅱ)法一:二次函数法,由题意,$ f(x+t) < f(\frac{x}{3})$ 对 $x\in [-1,1]$恒成立, 可转化为$\frac{1}{4}(x+t)^2+(x+t)+1 整理为$8x^2+(18t+24)x+9t^2+36t<0$对$x\in [-1,1]$恒成立, 令$g(x)=8x^2+(18t+24)x+9t^2+36t$,则有$\begin{cases}g(-1)<0\\g(1)<0\end{cases}$, 即有$\begin{cases}9t^2+18t-16<0\\9t^2+54t+32<0\end{cases}$, 解得$\begin{cases}-\frac{8}{3}< t 所以$t$的取值范围为$-\frac{8}{3}< t 法二,利用乘积的符号法则和恒成立命题求解, 由(1) 得到,$f(x)=\cfrac{1}{4}(x+2)^2$, $f(x+t) < f(\cfrac{x}{3})$对$x\in [-1,1]$恒成立, 可转化为$\frac{1}{4}(x+t+2)^2 得到$(x+t+2)^2-(\frac{x}{3}+2)^2<0$对$x\in [-1,1]$恒成立, 平方差公式展开整理,即$(\frac{4x}{3}+t+4)(\frac{2x}{3}+t)<0$, 即$\begin{cases}\frac{4x}{3}+t+4<0\\ \frac{2x}{3}+t >0\end{cases}$对$x\in [-1,1]$恒成立,或$\begin{cases}\frac{4x}{3}+t+4>0\\\frac{2x}{3}+t <0\end{cases}$对$x\in [-1,1]$恒成立; 即$\begin{cases}t (-\frac{2x}{3})_{max}\end{cases}$,或$\begin{cases}t >(-\frac{4x}{3}-4)_{max}\\t $\begin{cases}t \frac{2}{3}\end{cases}$,或$\begin{cases}t >-\frac{8}{3}\\t 即$x\in \varnothing$ 或$-\frac{8}{3}< t 所以$t$的取值范围为$-\frac{8}{3}< t 点评:①注意由$k\leq f(x)\leq k$得到$f(x)=k$的结论的使用。 ②二次函数$f(x)=ax^2+bx+c(a>0)$在区间$[m,n]$上恒有$f(x)<0$成立,等价于$f(m)<0$且$f(n)<0$。 ③乘积的符号法则$a\cdot b<0$等价于$a>0$且$b<0$或者$a<0$且$b>0$; ④恒成立的模型$A>f(x)$恒成立等价于$A> f(x)_{max}$,$A < f(x)$恒成立等价于$A < f(x)_{min}$; ⑤平方差公式的主动灵活运用。 ⒒含有绝对值符号(一个或两个)的恒成立问题; 已知函数$f_1(x)=e^x$,$f_2(x)=ax^2-2ax+b$,设$a>0$,若对任意的$m,n∈[0,1](m\neq n)$,$|f_1(m)-f_1(n)|>|f_2(m)-f_2(n)|$恒成立,求$a$的最大值。 【分析】利用函数的单调性去掉绝对值符号,构造新函数,可以将问题再次转化为恒成立,然后分离参数求解。 【解答】不妨设$m>n$,则函数$f_1(x)$在区间$[0,1]$上单调递增,故$f_1(m)-f_1(n)>0$, 又$f_2(x)=a(x-1)^2+b-a$,对称轴是$x=1$,开口向上,故函数$f_2(x)$在区间$[0,1]$上单调递减,故$f_2(m)-f_2(n)<0$, 这样对任意的$m,n∈[0,1](m>n)$,$|f_1(m)-f_1(n)|>|f_2(m)-f_2(n)|$恒成立, 就可以转化为$f_1(m)-f_1(n)>f_2(m)-f_2(n)$恒成立, 即$f_1(m)+f_2(m)>f_1(n)+f_2(n)$恒成立, 令$h(x)=f_1(x)+f_2(x)=e^x+ax^2-2ax+b$,则到此的题意相当于已知$m >n$时,$h(m)>h(n)$, 故函数$h(x)$在区间$[0,1]$上单调递增,故$h'(x)≥0$在区间$[0,1]$上恒成立; 即$h'(x)=e^x+2ax-2a≥0$在区间$[0,1]$上恒成立; 即$2a(1-x)≤ e^x$恒成立,这里我们使用倒数法分离参数得到, $\cfrac{1}{2a}≥\cfrac{1-x}{e^x}$在区间$[0,1]$上恒成立; 再令$p(x)=\cfrac{1-x}{e^x}$,即需要求$p(x)_{max}$, $p'(x)=\cfrac{-1×e^x-(1-x)e^x}{(e^x)^2}=\cfrac{x-2}{e^x}$, 容易看出,当$x∈[0,1]$时,$p'(x)<0$恒成立,故$p(x)$在区间$[0,1]$上单调递减, 则$p(x)_{max}=p(0)=1$,故$\cfrac{1}{2a}≥1$,又$a >0$, 故解得$0< a ≤1$。故$a_{max}=1$. 【点评】出现函数值的差的绝对值问题,常常想到利用函数的单调性去掉绝对值符号进行转化;另外在分离参数时如果按照常规方法分离需要分类讨论,这里使用了倒数法分离参数,就能很好的避免分类讨论,嵌套的层次比较多,运算量比较多,是个难题。 ⒓以函数图像的位置高低的形式给出; 比如,$x\in R$时,函数$f(x)=e^x$的图像始终不低于函数$g(x)=x+1$的图像。即$e^x\ge x+1$恒成立。

三、哪些问题或素材都能转化为能成立命题?Cnblogs_bxjq02.bmp

①以方程有解的形式给出的,或者给出了方程的解的范围的,又或者以方程成立的形式给出的都可以考虑转化为能成立命题; 引例1:函数$f(x)=lnx+a$,若方程$f'(x)=f(x)$的根$x_0 <1$,求实数$a$的取值范围。 分析:方程即$\cfrac{1}{x}=lnx+a$,转化为方程$a=\cfrac{1}{x}-lnx$,$0< x <1$时有解,令$h(x)=\cfrac{1}{x}-lnx,0< x <1$, 用导数求得其单调性,在$(0,1)$单调递减,值域为$(1,+\infty)$,故实数$a$的取值范围为$(1,+\infty)$。 引例2: ②或方程解集、不等式解集不是空集; 引例:不等式$x^2 +ax-2\ge 0$在区间 [1,5]上有解,或不等式$x^2 +ax-2\ge 0$在区间 [1,5]上解集不是空集, 分析:具体解法,见下。 ③函数有零点,或两个函数图像有交点; 引例:方程$lnx=ax$在$(0,+\infty)$有解,即函数$y=lnx$和函数$y=ax$图像在$(0,+\infty)$上有交点,利用数形结合求解; 引例:函数$f(x)=lnx-ax$在$(0,+\infty)$有零点,即函数$y=lnx$和函数$y=ax$图像在$(0,+\infty)$上有交点,利用数形结合求解; ④函数有极值点; 引例:已知函数$f(x)=x(lnx-ax)$有两个极值点,求$a$的取值范围【】 A.$(-\infty,0)$ $\hspace{2cm}$ B.$(0,\cfrac{1}{2})$ $\hspace{2cm}$ C.$(0,1)$ $\hspace{2cm}$ D.$(0,+\infty)$ 法1:函数$f(x)=x(lnx-ax)$有两个极值点,即导函数$f'(x)=lnx+1-2ax$有两个变号零点, 即方程$lnx=2ax-1$有两个不同实数根,即函数$y=lnx$与函数$y=2ax-1$有两个不同的交点,作出图像如右图; 992978-20171113122204968-1421088537.png 设恒过定点的函数$y=2ax-1$与函数$y=lnx$相切于点$(x_0,y_0)$, 则$\begin{cases}2a=\cfrac{1}{x_0}\\y_0=2ax_0-1\\y_0=lnx_0\end{cases}$, 解得$x_0=1,y_0=0$,即切点为$(1,0)$,此时直线的斜率为$k=1$, 由图像可知,要使函数$y=lnx$与函数$y=2ax-1$有两个不同的交点, 则$0<2a<1$,即$a\in(0,\cfrac{1}{2})$,故选B. 法2:转化为导函数$f'(x)=lnx+1-2ax$有两个变号零点, 分离参数得到,方程$2a=\cfrac{lnx+1}{x}$有两个不同的实根, 992978-20171113122802859-35618349.png 令$g(x)=\cfrac{lnx+1}{x}$,定义域为$x>0$,$g'(x)=\cfrac{-lnx}{x^2}$, 则$x\in(0,1)$时,$g'(x)>0$,函数$g(x)$单调递增, $x\in(1,+\infty)$时,$g'(x)<0$,函数$g(x)$单调递减, 故$g(x)_{max}=g(1)=1$, 作出函数$y=g(x)$和$y=2a$的图像于同一个坐标系中, 则得到$0<2a<1$,即$a\in(0,\cfrac{1}{2})$,故选B. ⑤两个函数的图像有关于$x、y$轴或原点的对称点; 引例:已知函数$f(x)=lnx-x^3$与$g(x)=x^3-ax$的图像上存在关于$x$轴的对称点,求$a$的取值范围。
引例:已知函数$f(x)=e^x+2(x<0)$与$g(x)=ln(x+a)+2$的图像上存在关于$y$轴对称的点,求$a$的取值范围
引例:已知函数$f(x)=lnx-x^2$与函数$g(x)=x^2-\cfrac{2}{x}-m$的图像上存在关于原点的对称点,求$m$的取值范围
若函数$f(x)$与函数$g(x)$的图像上存在关于$x$轴的对称点,则$f(x)=-g(x)$有解;
若函数$f(x)$与函数$g(x)$的图像上存在关于$y$轴的对称点,则$f(-x)=g(x)$有解;
若函数$f(x)$与函数$g(x)$的图像上存在关于原点的对称点,则$f(x)=-g(-x)$有解;

⑥以能成立形式给出; 引例:已知函数$f(x)=x^2 +ax-2≥0$在区间 $[1,5]$上能成立,求参数$a$的取值范围。 分析:分离参数得到,$a≥\cfrac{2}{x}-x$在区间$[1,5]$上能成立, 转化为求新函数$\cfrac{2}{x}-x$在$[1,5]$上的最小值。 令$g(x)=\cfrac{2}{x}-x,g(x)=\cfrac{2}{x}-x$在区间 $[1,5]$上单调递减, 所以$g(x)_{min}=g(5)=-\cfrac{23}{5},$所以$a≥-\cfrac{23}{5}$即$a$的取值范围是$[-\cfrac{23}{5},+∞)$ ⑦以不是单调函数形式给出;或函数在某区间上不单调给出; 引例1:若函数$f(x)=x+alnx$不是单调函数,则实数$a$的取值范围是 【 】 A.$[0,+\infty)$ $\hspace{2cm}$ B.$(-\infty,0]$ $\hspace{2cm}$ C. $(-\infty,0)$ $\hspace{2cm}$ D. $(0,+\infty)$ 分析:由题意知$x>0$,又$f′(x)=1+\cfrac{a}{x}$, 要使函数$f(x)=x+alnx$不是单调函数, 则需方程$f'(x)=1+\cfrac{a}{x}=0$在$x>0$上有解, 即方程$a=-x$在$x>0$上有解, 又函数$g(x)=-x$在$x>0$上的值域是$(-\infty,0)$,故$a\in(-\infty,0)$。 引例2:函数$f(x)=\cfrac{1}{3}x^3-x^2+ax-5$在区间$[-1,2]$上不单调,则实数$a$的取值范围是_________。 $(-3,1)$ 法1:补集思想,$f'(x)=x^2-2x+a$, 若函数$f(x)$在$[-1,2]$上单增,则$f'(x)=x^2-2x+a\ge 0$恒成立, 分离参数得到$a\ge -x^2+2x$恒成立,在$[-1,2]$上求得函数$f(x)_{max}=1$,故$a\ge 1$; 若函数$f(x)$在$[-1,2]$上单减,则$f'(x)=x^2-2x+a\leq 0$恒成立, 分离参数得到$a\leq -x^2+2x$恒成立,在$[-1,2]$上求得函数$f(x)_{min}=-3$,故$a\leq -3$; 故取其补集,当$-3< a <1$时,函数$f(x)$在区间$[-1,2]$上不单调。 法2:由题可知$f(x)$不单调,则导函数$y=f'(x)$在区间$[-1,2]$上至少有一个变号零点, 当只有一个变号零点时,由$f'(-1)\cdot f'(2)\leq 0$可得,$-3\leq a\leq 0$; 当有两个变号零点时,由$\begin{cases}f'(-1)>0\\f'(2)>0\\ \Delta >0\end{cases}$,解得$0< a <1$; 综上所述,实数$a$的取值范围是$(-3,1)$。 ⑧以函数$f(x)$存在单调区间的形式给出 Cnblogs_LT02.bmp$\fbox{例17}$【2019高三理科数学资料用题】【2018荆州模拟改编】 设函数$f(x)=\cfrac{1}{3}x^3-\cfrac{a}{2}x^2+1$,函数$g(x)=f(x)+2x$,且$g(x)$在区间$(-2,-1)$内存在单调递减区间,求实数$a$的取值范围; 分析:$g(x)=\cfrac{1}{3}x^3-\cfrac{a}{2}x^2+1+2x$,则$g'(x)=x^2-ax+2$, 由$g(x)$在区间$(-2,-1)$内存在单调递减区间,得到, $g'(x)=x^2-ax+2<0$在区间$(-2,-1)$上能成立, 分离参数得到,$a < x+\cfrac{2}{x}$在区间$(-2,-1)$上能成立, 而$\left(x+\cfrac{2}{x}\right)_{max}=-2\sqrt{2}$,当且仅当$x=\cfrac{2}{x}$,即$x=-\sqrt{2}$时取到等号, 故实数$a$的取值范围为$(-\infty,-2\sqrt{2})$。 注意:存在单调递减区间,应该得到$f'(x)<0$能成立,而不是$f'(x)\leq 0$能成立。 若$a=-2\sqrt{2}$,由$g'(x)=x^2+2\sqrt{2}x+2=(x+\sqrt{2})^2\ge 0$恒成立, 则函数$g(x)$只能有单调递增区间,不会存在单调递减区间。 ⑨以特称命题形式给出; 引例:$\exists x_0\in [1,5]$,使得不等式$x^2 +ax-2\ge 0$成立。 分析:具体解法,见上。 ⑩以至多至少型命题形式给出; 引例:不等式$x^2 +ax-2\ge 0$在区间 [1,5]上至少有一个解。 分析:具体解法,见上。

四、转化为恒成立能成立命题后该怎么处理?

①先考虑能否分离参数, 参见分离参数法 如果能,转化为$A\ge f(x)$恒成立,则需要求函数$f(x)$的最值,函数如果形式简单,不用导数法,如果复杂,需要用导数法; ②如果不能,再考虑数形结合,即左右两端的函数中,有一个带有参数,考虑其几何意义。

五、注意事项:

1、有恒字的不一定是恒成立命题,如两个函数图像恒有交点,即两个函数图像至少有一个交点,其实是能成立命题。 没有恒字的不一定不是恒成立命题。 2、不等式无解应该等价转化为不等式恒成立。 比如,$f(x)< x$在$R$上无解,即意味着不等式$f(x)< x$的解集为$x\in \varnothing$,那么 不等式$f(x)\ge x$在$R$上应该是恒成立的,即不等式$f(x)\ge x$的解集为$x\in R$, 引例,比如不等式$e^x< x$无解,即不等式$e^x\ge x$的解集为$x\in R$, 即$x\in R$时,不等式$e^x > x$恒成立。 3、注意细节上的变化 若$A\leq f(x)$在区间$(m,n)$上恒成立,等价于$A\leq f(x)_{min}$或最小值的极限。 若$A< f(x)$在区间$(m,n)$上恒成立,等价于$A\leq f(x)_{min}$或最小值的极限。

转载于:https://www.cnblogs.com/wanghai0666/p/8949257.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值