Nick

亘古而常青的昨天永远是过去,也永远会再来。

随机抽样一致算法(Random sample consensus,RANSAC 简单版)PYTHON实现

一、RANSAC理论介绍 普通最小二乘是保守派:在现有数据下,如何实现最优。是从一个整体误差最小的角度去考虑,尽量谁也不得罪。 RANSAC是改革派:首先假设数据具有某种特性(目的),为了达到目的,适当割舍一些现有的数据。 给出最小二乘拟合(红线)、RANSAC(绿线)对于一阶直线、二阶曲线...

2019-01-03 16:18:13

阅读数 23

评论数 0

SVM(python实现)

看《机器学习(西瓜书)》可以理解SVM的推导过程,重点是看附录理解“对偶问题”,以及核函数的定义。 SVM的代码主要是SMO算法的实现,主要参考《统计学习方法》,即如何选择pair进行优化,收敛后即可得到α、w、b 代码: # _*_ coding:utf-8 _*_ from numpy...

2018-12-28 18:20:30

阅读数 30

评论数 0

计算机视觉会议和期刊分类

会议: 三大顶级   ICCV:International Conference on Computer Vision,国际计算机视觉大会   CVPR:International Conference on Computer Vision and Pattern Recognition,国际计算...

2018-08-06 10:00:56

阅读数 181

评论数 0

二值图细化

程序编码参考经典的细化或者骨架算法文章: T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital patterns,” Comm. ACM, vol. 27, no. 3, pp. 236-239, ...

2017-12-11 16:49:17

阅读数 221

评论数 0

图像分割,从Graph Cut到Grab Cut

图像分割之(三)从Graph Cut到Grab Cut <div class="article_manage clearfix"> <div class="article_r...

2017-09-25 21:23:25

阅读数 231

评论数 0

图像分割算法之 Graph Cut

Graph Cut 与Grab Cut 都是基于图论得分割方法。另外OpenCV实现了Grab Cut。Graph cuts 是一种有用和流行的能量优化算法,在计算机视觉领域应用于前背景分割,立体视觉,抠图。此类问题与图的最小割问题相关联。 首先用一个无向图 G 表示要分割的图像,V和E...

2017-09-25 20:43:06

阅读数 241

评论数 0

利用Hog特征和SVM分类器进行行人检测

之前介绍过Hog特征(http://blog.csdn.net/carson2005/article/details/7782726),也介绍过SVM分类器(http://blog.csdn.net/carson2005/article/details/6453502 );而本文的目的在于介绍利用...

2017-07-20 21:34:56

阅读数 257

评论数 0

目标检测的图像特征提取之HOG特征

目标检测的图像特征提取之(一)HOG特征zouxy09@qq.comhttp://blog.csdn.net/zouxy09 1、HOG特征:       方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特...

2017-07-20 21:31:11

阅读数 157

评论数 0

SIFT特征提取分析

SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效...

2017-07-20 19:48:38

阅读数 257

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭