计算机视觉
NickChen_0411
学生
展开
-
目标检测的图像特征提取之HOG特征
目标检测的图像特征提取之(一)HOG特征zouxy09@qq.comhttp://blog.csdn.net/zouxy09 1、HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应转载 2017-07-20 21:31:11 · 321 阅读 · 0 评论 -
随机抽样一致算法(Random sample consensus,RANSAC 简单版)PYTHON实现
一、RANSAC理论介绍普通最小二乘是保守派:在现有数据下,如何实现最优。是从一个整体误差最小的角度去考虑,尽量谁也不得罪。RANSAC是改革派:首先假设数据具有某种特性(目的),为了达到目的,适当割舍一些现有的数据。给出最小二乘拟合(红线)、RANSAC(绿线)对于一阶直线、二阶曲线的拟合对比:可以看到RANSAC可以很好的拟合。RANSAC可以理解为一种采样的方式,所以对于...转载 2019-01-03 16:18:13 · 2168 阅读 · 0 评论 -
SVM(python实现)
看《机器学习(西瓜书)》可以理解SVM的推导过程,重点是看附录理解“对偶问题”,以及核函数的定义。SVM的代码主要是SMO算法的实现,主要参考《统计学习方法》,即如何选择pair进行优化,收敛后即可得到α、w、b代码:# _*_ coding:utf-8 _*_from numpy import *def loadDataSet(filename): #读取数据 dat...转载 2018-12-28 18:20:30 · 4708 阅读 · 0 评论 -
计算机视觉会议和期刊分类
会议:三大顶级 ICCV:International Conference on Computer Vision,国际计算机视觉大会 CVPR:International Conference on Computer Vision and Pattern Recognition,国际计算机视觉与模式识别大会 ECCV:European Conference on Computer V...转载 2018-08-06 10:00:56 · 5784 阅读 · 1 评论 -
二值图细化
程序编码参考经典的细化或者骨架算法文章: T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital patterns,” Comm. ACM, vol. 27, no. 3, pp. 236-239, 1984. 它的原理也很简单: 我们对一副二值图像进行骨架提取,就是删除不需要的轮廓点,转载 2017-12-11 16:49:17 · 1104 阅读 · 0 评论 -
图像分割,从Graph Cut到Grab Cut
图像分割之(三)从Graph Cut到Grab Cut <div class="article_manage clearfix"> <div class="article_r"> <span class="link_postdate">2013-01-23 17:00</span> <span转载 2017-09-25 21:23:25 · 531 阅读 · 0 评论 -
图像分割算法之 Graph Cut
Graph Cut 与Grab Cut 都是基于图论得分割方法。另外OpenCV实现了Grab Cut。Graph cuts 是一种有用和流行的能量优化算法,在计算机视觉领域应用于前背景分割,立体视觉,抠图。此类问题与图的最小割问题相关联。 首先用一个无向图 G 表示要分割的图像,V和E分别是顶点(vertex)和边(edge)的集合。此处的Graph和普通的Graph稍有不同。Graph转载 2017-09-25 20:43:06 · 1150 阅读 · 0 评论 -
利用Hog特征和SVM分类器进行行人检测
之前介绍过Hog特征(http://blog.csdn.net/carson2005/article/details/7782726),也介绍过SVM分类器(http://blog.csdn.net/carson2005/article/details/6453502 );而本文的目的在于介绍利用Hog特征和SVM分类器来进行行人检测。 在2005年CVPR上,来自法国的研究人员Na转载 2017-07-20 21:34:56 · 527 阅读 · 0 评论 -
SIFT特征提取分析
SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下:算法描述SIFT特征不只具有尺度不变性,即使改变旋转角度,图像亮度或拍摄视角,仍然能够转载 2017-07-20 19:48:38 · 501 阅读 · 0 评论 -
七巧板拼接
知识点:1. 求凸包2. 平面图形的旋转和翻转,矩阵运算3.求向量夹角,判断拼接是否有重复代码:import copyimport numpy as np# get colours and coordinatesdef available_coloured_pieces(file_name): # get all coordinates from fi...原创 2019-05-06 18:03:03 · 833 阅读 · 0 评论