树的定义

树(Tree)是n个(n>=0)个结点的有限集。 n=0时称之为空树。在任意一个非空树中:

(1)有且仅有一个特定的称为根(Root)的结点;

(2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2,T3...Tm,其中每个集合本身就是一棵树,并且称为根的子树(Subtree)

注:n>0时,树根仅为1,不可能存在多个根结点;m>0时,子树的个数没有限制,但是他们互不相交(相交及为图)。


结点分类

树的结点包含一个数据元素及若干个指向其子树的分支。

结点拥有的子树称之为结点的度。

度为0的结点称之为叶子结点(Leaf)或终端结点;度不为0的节点称之为非终端结点或分支结点。

除根节点外,分支结点也称之为内部结点。树的度是树内各结点度的最大值

结点间的关系

结点的子树的根称之为该结点的孩子(Child),相应的,该结点称之为还在的双亲(Parent).

同一个双亲的孩子之间互称兄弟(Sibling)结点的祖先是从根到该结点所经分支上所有结点。

以某一结点为根的子树中,任意结点都称为该结点的子孙。

树的其他相关概念

结点的层次(level)从根开始定义起,根为第一层,根的孩子为第二层。

双亲在同一层的结点,互称之为堂兄弟。树中结点最大的层次称之为树的深度(Depth)或者高度。

如果将树中结点的各个子树看成从左向右,不能互换的,则称该树为有序树,否则为无序树。


森林(Forest)是m个(m>=0)棵不相交的树的集合。对树中每个结点而言,其子树的集合即为森林。


线性结构和树形结构对比

线性结构: 第一个元素:无前驱;最后一个元素:无后继; 中间元素:一个前驱,一个后继

树形结构: 根结点:无双亲,唯一; 叶子结点:无孩子,可以多个; 中间结点:一个双亲,多个孩子


树的存储结构

双亲表示法

假设以一组连续控件存储树的结点,同时在每个结点中,附设一个指示器指向其双亲结点到链表中的位置。

data是数据域,存储结点的数据信息。而parent是指针域,存储结点的双亲在数组中的下标。


结点结构定义代码:

// 树的双亲表示法结点定义
#define MAX_TREE_SIZE 100
typedef int TElemType;

typedef struct PTNode               //结点结构
{
    TElemType data;                 //结点数据
    int parent;                     //双亲位置
}PTNode;

typedef struct                      //树结构
{
    PTNode node [MAX_TREE_SIZE];    //结点数组
    int r,n;                        //根的位置和结点树
}PTree;

由于根结点没有双亲,则约定根节点的位置域设置为 -1



对于这种存储结构,我们可以根据结点的parent域来很容易的找到它的双亲结点,所以时间复杂度为O(1)。直到parent为-1为止,表示找到了树结点的根。

但是对于找到结点孩子是谁时,需要遍历整个结构才行。可以通过增加域来增加这种结构的灵活性。


孩子表示法

每个结点有多个指针域,其中每个指针指向一棵子树的根节点,这种方法叫多重链表表示法。


把每个结点的孩子排列起来,以单链表作存储结构,则n个结点有n个孩子链表,如果是叶子结点,则此单链表为空。然后n个头指针又组成一个线性表,采用顺序存储结构,存放进一个一维数组中。

为此需要准备两种数据结构,一种是孩子链表的结点,其中child为数据域,用来存储某个结点在表头数组中的下标。next是指针域,用来存储指向某结点的下一个孩子结点指针。

另外一种是表头数组的表头结点。data为数据域,存储某结点的数据信息,firstchild是头指针域,存储该结点孩子链表的头结点。


// 树的孩子表示法结构定义

#define MAX_TREE_SIZE 100

typedef struct CTNode       //孩子结点
{
    int child;
    struct CTNode *next;
} *ChildPtr;

typedef struct              //表头结构
{
    TElemType data;
    ChildPtr firstchild;
} CTBox;

typedef struct              // 树结构
{
    CTBox nodes[MAX_TREE_SIZE]; //结点数组
    int r,n;                    //跟的位置和结点数
}CTree;

这种结构对于我们查找某个结点的孩子,或者某个结点的兄弟,只需要查找这个结点的孩子链表即可。对于遍历整个树也是很方便,对头结点的数组循环即可。

但是如果要找某个结点的双亲,则需要遍历整个树才行。 但是可以把双亲标识法和孩子表示法综合起来。



孩子兄弟表示法

任意一棵树,他的结点的第一个孩子如果存在就是唯一的,他的右兄弟如果存在也是唯一的。因此,我们设置两个指针,分别指向该结点的第一孩子和此结点的右兄弟。

data为数据域,firstchild为指针域,存储结点的第一个孩子结点的存储地址,rightsib指针域,存储该结点的有兄弟结点存储地址


// 树的孩子兄弟表示法结构定义
typedef struct CSNode
{
    TElemType data;
    struct CSNode *firstchild, *rightsib;
}CSNode, *CSTree;


二叉树的定义

二叉树(Binary Tree) 是n(n>=0)个结点的有线集合,该集合或者为空集(称空二叉树),或者由一个根结点和两颗互不相交的,分别称之为根结点的左子树和右子树的二叉树构成。



二叉树特点

1,每个结点最多有两棵子树,所以二叉树中不存在度大于2的结点。

2,左子树和右子树是有顺序的,次序不能任意颠倒。

3,即使树中某个结点只有一棵子树,也要区分它是左子树还是右子树。


五种基本形态:

1,空二叉树;

2,只有一个根结点;

3,根结点只有左子树;

4,根节点只有右子树;

5,根节点既有左子树又有右子树。


对于三个结点的树,若只考虑形态,只有两种状况,但是二叉树是区分左右的,所以就演变成五种形态。


特殊二叉树

1,斜树

所有的结点只有左子树的二叉树叫做左斜树,所有结点只有右子树的二叉树叫做右斜树。

特点,每层只有一个结点,结点的个数与二叉树的深度相同


2,满二叉树

在一棵二叉树中,如果所有的分支都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。


单是每个结点都存在左右子树,不能算是满二叉树,还必须要所有的叶子结点都在同一层上,这样做到了整棵树的平衡。


满二叉树的特点:

1,叶子只能出现在最下面一层。

2,非叶子结点的度一定是2。

3,在同样深度的二叉树中,满二叉树的结点个数最多,叶子数最多。


3,完全二叉树

对一棵具有n个结点的二叉树按层序编号,如果编号i (1<=i<=n)的结点与同样深度的满二叉树序号为i的结点在二叉树中的位置完全相同,则这个二叉树为完全二叉树。


满二叉树一定是一棵完全二叉树,但是完全二叉树不一定是满二叉树。

完全二叉树的所有结点与同样深度的满二叉树,他们按层序号的结点,是一一对应的。


完全二叉树的一些特点:(判断方法)

1,叶子结点只能出现在最下面两层;

2,最下层的叶子一定集中在左边连续位置;

3,倒数两层,若有叶子结点,一定都在右部连续位置;

4,如果结点度为1,则该结点只有左孩子,不可能存在只有右子树的情况;

5,同样结点树的二叉树,完全二叉树的深度最小。


二叉树的性质

二叉树性质1

性质1: 在二叉树的第i层上至多有2^(i-1)个结点。(i>=1)


二叉树性质2

性质2:深度为k的二叉树至多有2^k-1个结点(k>=1)

注:是2^k -1


二叉树性质3

性质3:对任何一棵二叉树T, 如果其终端结点(叶子结点)数为n0, 度为2的结点数为n2,则 n0 = n2 +1;


二叉树性质4

性质4:具有n个结点的完全二叉树的深度为[log2n] + 1.


二叉树性质5

性质5:如果对一棵有n个结点的完全二叉树(其深度为[log2n] + 1)的结点按层序号,对任一结点i (1<= i<=n)有:

1,如果i =1, 则结点i是二叉树的根,无双亲;如果i>1, 则其双亲是结点[i/2];

2,如果2i > n, 则结点i 无左孩子(结点i为叶子结点);否则其左孩子是结点2i;

3,如果2i + 1 > n,则结点 i无右孩子; 否则其有孩子是结点 2i+1;



二叉树的存储结构

二叉树顺序存储结构

二叉树的顺序存储结构就是用一维数组存储二叉树中的结点,并且结点的存储位置,也就是数组的下标需要体现结点间的逻辑关系。


这只是对于完全二叉树,但是对于一般二叉树,尽管层序编号不能反映逻辑关系,但是可以将其按完全二叉树编号,只不过,把不存在的几点设置为”/\“。


对于极端情况,一棵深度为K的右斜树,他只有K个几点,却要分配2^k -1个存储单元的空间。这显然是对存储空间的浪费。 所以对于顺序存储,一般只用在完全二叉树结构。




二叉链表

二叉树每个结点最多有两个孩子,所以为他涉及一个数据域和两个指针域,称这样的链表叫做二叉链表

其中data是数据域,lchild 和 rchild 都是指针域。分别存放指向左孩子和有孩子的结点。

// 二叉树的二叉链表结点结构定义
typedef struct BiTNode
{
    TELemType data;
    struct BiTNode *lchild,*rchild;
}BiTNode, *BiTree;

遍历二叉树

二叉树遍历原理

二叉树的遍历,是指从根结点出发,按照某种次序依次访问二叉树中所有结点,使得每个结点被访问一次且仅仅被访问一次。


二叉树遍历方法:

二叉树的遍历方式很多:

1,前序遍历:

规则是若二叉树为空,则空操作返回,否则先访问根结点,然后前序遍历左子树,再前序遍历右子树。


2,中序遍历

若树为空,则空操作返回,否则从根节点开始(并不是先访问根节点),中序遍历根节点的左子树,然后访问根节点,最后中序遍历右子树。


3,后序遍历

若树为空,则空操作返回,否则从左到右先叶子后根结点的方式遍历访问左右子树,最后是访问根结点。


4,层序遍历

若树为空,则空操作返回,否则从树的第一层,也就是根结点开始访问,从上而下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。


前序遍历算法

二叉树定义是用递归的方式,所以,实现遍历算法也可以采用递归方式

// 二叉树的先序遍历算法

void PreOrderTraverse(BiTree T)
{
    if(T == NULL)
        return;

    printf("%c",T->data);   //显示结点数据

    PreOrderTraverse(T->lchild);    //先序遍历左子树
    PreOrderTraverse(T->rchild);    //最后先序遍历右子树
}

非递归方式:

void PreOrderTraverseNo(BiTree T)
{
    BiTree p,q;
    *p = T;
    int top;       // 栈顶索引

    BiTree stack[MAX_SIZE] = {0};   //初始化栈


    if(T == NULL)
    {
        return NULL:
    }
    else
    {
        while(p != NULL)            
        {
            cout<< p->data;         //访问结点

            q = p->rchild;          //取其右子树结点

            if(q != NULL)           //不空,压栈
                stack[++top] = q;

            p = p->lchild;          //遍历左子树

            if(p == NULL)           //为空弹栈,找右子树
                p = stack[top--];
        }
    }
}


中序遍历算法

// 二叉树的中序遍历算法

void InOrderTraverse(BiTree T)
{
    if(T == NULL)
        return;

    InOrderTraverse(T->lchild); //中序遍历左子树
    printf("%c",T->data);       // 显示结点数据,可以更改为其他的对结点操作
    InOrderTraverse(T->rchild); //最后中序遍历右子树
}

后序遍历算法

// 二叉树的后序遍历算法

void PostOrderTraverse(BiTree T)
{
    if(T == NULL)
        return;

    PostOrderTraverse(T->lchild); //后序遍历左子树    
    PostOrderTraverse(T->rchild); //后序遍历右子树
    printf("%c",T->data);       // 显示结点数据,可以更改为其他的对结点操作
}

二叉树遍历的性质:

已知前序遍历序列中序遍历序列,可以唯一确定一棵二叉树。

已知后续遍历序列和中序遍历序列,可以唯一确定一棵二叉树。


但是,已知前序和后序遍历,是不能确定一棵二叉树的。


二叉树的建立

为了简历一棵树,为了让每个结点确认是否有左右孩子,我们对他进行了扩展,也就是将二叉树中每个结点的空指针引出一个虚结点,其值为一个特定值,如”#“。这种处理后的二叉树叫做原二叉树的扩展二叉树。扩展二叉树就可以做到一个遍历确定一棵二叉树,如下树的前序遍历为:AB#D##C##



// 按前序输入二叉树中的结点值,#标识空树,构造二叉链表表示的二叉树

void CreatBiTree(BiTree* T)
{
    TElemType ch;
    scanf("%c",&ch);

    if(cd == '#')
        *T = NULL;
    else
    {
        *T = (BiTree)malloc(sizeof(BiTree));
        if(!*T)
        {
            exit(OVERFLOW);
        }

        (*T)->data = ch; //生成根结点
        CreatBiTree(&(*T)->lchild); //构造左子树
        CreatBiTree(&(*T)->rchild); //构造右子树
    }

}

可看到构造子树时是用到了先序方式,也可以根据需要用中序或者后序方式构造。


线索二叉树(未完)



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值