超简单白话文机器学习 - 回归树&树剪枝(含算法介绍,公式,源代码实现以及调包实现)

1. 回归树

1.1 算法介绍

大家看到这篇文章时想必已经对树这个概念已经有基础了,如果不是很了解的朋友可以看看笔者的这篇文章:

超简单白话文机器学习-决策树算法全解(含算法介绍,公式,源代码实现以及调包实现)_白话决策树-CSDN博客

对于回归树的建立,我们一般使用CART回归树,CART(Classification and Regression Trees)回归树是一种用于连续值预测的树模型。它通过递归地分裂数据集,以最小化预测误差为目标,最终生成一棵树结构的模型。

CART回归树的构建核心是选择最佳分裂点通过计算MSE进行衡量。

1. 选择最佳分裂点,对每个特征尝试所有的分裂点,计算分裂后各个数据集的均方误差。

2. 计算分裂前后的总MSE:

其中,n为总样本数,各分子分别是左子节点和右子节点的样本数。

3. 递归分裂,对每个子节点重复上述步骤直到满足停止条件(例如达到最大深度或叶节点中的样本数少于阈值)

获得最佳划分特征之后,需要确定分裂节点的阈值,需要最小化目标函数

1. 首先对于最佳划分特征中的数值进行迭代。

2. 对于该特征特定数值进行分裂的样本进行错误率的计算。

3. 汇总后选择错误率最小的数值作为阈值选择。

2. 树剪枝概述

2.1 预剪枝

2.1.1 算法

预剪枝的核心是在生成决策树的过程中提前停止树的增长。计算当前的划分是否能带来模型泛化能力的提升,如果不能,则不再继续生长子树。

有如下几种方法:

( 1 )当树到达一定深度的时候,停止树的生长。
( 2 )当到达当前结点的样本数量小于某个阈值的时候,停止树的生长。
( 3 )计算每次分裂对测试集的准确度提升,当小于某个阈值的时候 ,不再继续扩展。

2.2 后剪枝

2.2.1 算法

首先我们先讲后剪枝的伪代码用口水话进行呈现:

基于已有的树切分测试数据:

1. 如果存在任一子集是一棵树,则在该子集递归剪枝过程

2. 计算将当前两个叶节点合并后的误差

3. 计算不合并的误差

4. 如果合并可以降低误差,就合并

剪枝策略:

如果剪枝后的叶节点误差小于或等于未剪枝子树的误差,则进行剪枝,即将该内部节点变为叶节点。继续评估和剪枝树中的其他节点,直到不再有可以进一步剪枝的节点。

误差的衡量方式有多种,回归树的误差衡量我们一般选择MSE。

2.2.2 代价复杂度剪枝

前文我们已经讲了,防止过拟合的方法之一时,对决策树进行剪枝,即减少树的分支。 剪枝防止过拟合使得在测试集上的表现更好。

将公式呈现在这里:

让我们用白话文转化一下这个公式:

评价一棵树的得分由两部分组成,第一部分为SSR,一种预测错误率的衡量方式。第二部分代表决策树T的叶子结点个数,阿尔法是自定义指数,需要通过交叉验证的方式得到最佳参数,不同的参数影响最终所生成的树。

举个例子:

对于这四个树我们取得了他们总体的SSR值,假设我们的参数值为1000,计算树的得分。

选取得分最小的树作为我们的预测模型,即第一棵树拥有四个叶子节点。改变参数值会选择不同的预测模型,让我们计算在什么参数值下会分别指向哪一棵树。

在不同参数值的条件下,我们使用测试集迭代进行交叉验证,根据测试集最后的得分我们选择最佳参数作为判断标准,最终构造我们的预测树模型。

3. 手写代码实现

3.1 回归树

def regLeaf(dataset):
    return np.mean(dataset[:,-1]) #得到叶结点,目标变量的均值
    
def regErr(dataset):
    return np.var(dataset[:,-1]) * np.shape(dataset)[0] #返回的是总方差

def chooseBestSplit(dataset,leafType=regLeaf,errType=regErr,ops=(1,4)):
    tols = ops[0];tolN = ops[1] #tols是容许的误差下降值, yolN是切分的最少样本数
    if len(set(dataset[:,-1].T.tolist()[0])) == 1: #如果剩余特征为1
        return None,leafType(dataset) #直接返回叶子结点
    m,n = np.shape(dataset)
    S = errType(dataset) #数据集的总误差
    bestS = 100000; bestIndex=0;bestvalue = 0
    for featIndex in range(n-1):
        for splitVal in set(dataset[:,featIndex]): #对于某特征不同值的集合进行迭代
            mat0,mat1 = binSplitDataset(dataset,feat,splitVal)
            if (np.shape(mat0)[0] < tolN) or (np.shape(mat1)[0] < tolN): continue #如果不满足最少切分样本树
            newS = errType(mat0) + errorType(mat1) #返回数据集的总方差
            if newS < bestS: #选择总方差最少的数据分类方式
                bestIndex = feat
                bestvalue = splitVal
                bestS = newS
    if (S - bestS) < tols: #如果小于要求的误差下降值,则直接返回叶子结点
        return None,leafType(dataset)
    mat0,mat1 = binSplitDataset(dataset,bestIndex,bestvalue)
    if (np.shape(mat0)[0] < tolN) or (np.shape(mat1)[0] < tolN):
        return None, leafType(dataset)
    return bestIndex,bestValue

4. 调包实现

4.1 预剪枝

import numpy as np
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载数据集
data = load_iris()
X = data.data
y = data.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 设置预剪枝条件
max_depth = 3  # 限制树的最大深度
min_samples_split = 4  # 分裂一个内部节点所需的最小样本数
min_samples_leaf = 2  # 叶节点所需的最小样本数

# 初始化并训练决策树分类器
clf = DecisionTreeClassifier(random_state=42, 
                             max_depth=max_depth, 
                             min_samples_split=min_samples_split, 
                             min_samples_leaf=min_samples_leaf)

clf.fit(X_train, y_train)

# 预测并评估模型性能
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)

print(f'预剪枝条件下的决策树分类器准确率: {accuracy:.4f}')

# 可视化决策树(需要graphviz支持)
from sklearn.tree import export_graphviz
import graphviz

dot_data = export_graphviz(clf, out_file=None, 
                           feature_names=data.feature_names,  
                           class_names=data.target_names,  
                           filled=True, rounded=True,  
                           special_characters=True)  
graph = graphviz.Source(dot_data)  
graph.render("iris_prepruned_tree")  # 将树保存为PDF文件
graph  # 在Jupyter Notebook中显示决策树

4.2 后剪枝

import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split, cross_val_score
import matplotlib.pyplot as plt

# 示例数据集
X = np.array([[2.7, 2.5], [1.3, 1.5], [3.2, 2.8], [3.8, 2.5], [2.9, 2.4],
              [6.5, 3.1], [7.1, 3.4], [6.0, 2.9], [7.6, 3.2], [6.3, 3.0]])
y = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 生成完整的决策树
clf = DecisionTreeClassifier(random_state=42)
clf.fit(X_train, y_train)

# 获取剪枝路径
path = clf.cost_complexity_pruning_path(X_train, y_train)
ccp_alphas, impurities = path.ccp_alphas, path.impurities

# 遍历不同的剪枝参数,选择最佳剪枝
clfs = []
for ccp_alpha in ccp_alphas:
    clf = DecisionTreeClassifier(random_state=42, ccp_alpha=ccp_alpha)
    clf.fit(X_train, y_train)
    clfs.append(clf)

# 交叉验证选择最佳剪枝参数
alpha_scores = [cross_val_score(clf, X_train, y_train, cv=2).mean() for clf in clfs]
best_clf = clfs[np.argmax(alpha_scores)]

# 在测试集上评估最佳模型
test_score = best_clf.score(X_test, y_test)
print(f'Best alpha: {ccp_alphas[np.argmax(alpha_scores)]}')
print(f'Test set score: {test_score}')

# 可视化剪枝路径
plt.figure(figsize=(10, 6))
plt.plot(ccp_alphas, alpha_scores, marker='o', drawstyle='steps-post')
plt.xlabel('Alpha')
plt.ylabel('Cross-validated accuracy')
plt.title('Alpha vs Cross-validated accuracy')
plt.show()

5. 剪枝的优点与局限性

5.1 预剪枝

5.1.1 优点

提高可解释性:便于理解。

减少计算复杂度:在构建树的过程中提前停止分裂,减少模型训练时间和计算资源的消耗。

防止过拟合:限制树的复杂度,提高模型的泛化能力。

5.1.2 局限性

次优决策:在树构建过程中基于局部信息作出决策,可能忽略了更深层次的潜在有用分裂。

信息丢失:某些潜在的重要特征和信息可能未能充分利用,导致模型的表达能力有限。

难以处理复杂模式:简单树结构可能无法捕捉复杂的决策边界,从而影响分类或回归的精度。

5.2 后剪枝

5.2.1 优点

后剪枝比预剪枝保留了更多的分支, 欠拟合风险小 , 泛化性能往往优于预剪枝决策树

5.2.2 局限性

训练时间开销大 :后剪枝过程是在生成完全决策树 之后进行的,需要自底向上对所有非叶结点逐一计算

6. 应用前景

1. 医疗保健:

-疾病预测:回归树用于疾病的发生概率,基于病患的历史数据和体检报告进行精准预测

-治疗效果评测:预测不同治疗方案的效果,帮助医生制定个性化的治疗计划

2. 环境科学:

-气象预测:用于预测天气变化趋势,例如温度,降水量等

-环境监测:监测和预测空气质量,水质等环境指标

...

6. 参考资料

https://www.cnblogs.com/wuliytTaotao/p/10724118.html

机器学习-预剪枝和后剪枝-CSDN博客

回归树剪枝:代价复杂度剪枝

  • 33
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
以下是一个简单的C语言实现六子棋建立博弈α-β剪枝算法的代码: ```c #include <stdio.h> #define MAX_DEPTH 4 // 最大搜索深度 #define INF 0x7fffffff // 定义最大值 // 六子棋的棋盘大小为 15 x 15 #define BOARD_SIZE 15 // 定义棋子类型 #define BLACK 1 #define WHITE 2 // 定义棋盘 int board[BOARD_SIZE][BOARD_SIZE]; // 定义结构体表示落子位置 struct point { int x, y; }; // 估值函数,计算当前棋盘状态对当前玩家的估值 int evaluate(int player) { int score = 0; // 计算横向得分 for (int i = 0; i < BOARD_SIZE; i++) { for (int j = 0; j < BOARD_SIZE - 5; j++) { int count = 0; for (int k = 0; k < 6; k++) { if (board[i][j + k] == player) count++; else if (board[i][j + k] != 0) count = 0; } if (count == 1) score += 10; else if (count == 2) score += 100; else if (count == 3) score += 1000; else if (count == 4) score += 10000; else if (count == 5) score += 100000; } } // 计算纵向得分 for (int i = 0; i < BOARD_SIZE - 5; i++) { for (int j = 0; j < BOARD_SIZE; j++) { int count = 0; for (int k = 0; k < 6; k++) { if (board[i + k][j] == player) count++; else if (board[i + k][j] != 0) count = 0; } if (count == 1) score += 10; else if (count == 2) score += 100; else if (count == 3) score += 1000; else if (count == 4) score += 10000; else if (count == 5) score += 100000; } } // 计算斜向得分(左上到右下) for (int i = 0; i < BOARD_SIZE - 5; i++) { for (int j = 0; j < BOARD_SIZE - 5; j++) { int count = 0; for (int k = 0; k < 6; k++) { if (board[i + k][j + k] == player) count++; else if (board[i + k][j + k] != 0) count = 0; } if (count == 1) score += 10; else if (count == 2) score += 100; else if (count == 3) score += 1000; else if (count == 4) score += 10000; else if (count == 5) score += 100000; } } // 计算斜向得分(右上到左下) for (int i = 0; i < BOARD_SIZE - 5; i++) { for (int j = 5; j < BOARD_SIZE; j++) { int count = 0; for (int k = 0; k < 6; k++) { if (board[i + k][j - k] == player) count++; else if (board[i + k][j - k] != 0) count = 0; } if (count == 1) score += 10; else if (count == 2) score += 100; else if (count == 3) score += 1000; else if (count == 4) score += 10000; else if (count == 5) score += 100000; } } return score; } // 判断当前玩家是否胜利 int check_win(int player) { // 检查横向 for (int i = 0; i < BOARD_SIZE; i++) { for (int j = 0; j < BOARD_SIZE - 5; j++) { int count = 0; for (int k = 0; k < 6; k++) { if (board[i][j + k] == player) count++; else count = 0; } if (count == 5) return 1; } } // 检查纵向 for (int i = 0; i < BOARD_SIZE - 5; i++) { for (int j = 0; j < BOARD_SIZE; j++) { int count = 0; for (int k = 0; k < 6; k++) { if (board[i + k][j] == player) count++; else count = 0; } if (count == 5) return 1; } } // 检查斜向(左上到右下) for (int i = 0; i < BOARD_SIZE - 5; i++) { for (int j = 0; j < BOARD_SIZE - 5; j++) { int count = 0; for (int k = 0; k < 6; k++) { if (board[i + k][j + k] == player) count++; else count = 0; } if (count == 5) return 1; } } // 检查斜向(右上到左下) for (int i = 0; i < BOARD_SIZE - 5; i++) { for (int j = 5; j < BOARD_SIZE; j++) { int count = 0; for (int k = 0; k < 6; k++) { if (board[i + k][j - k] == player) count++; else count = 0; } if (count == 5) return 1; } } return 0; } // 极大极小值搜索 int alphabeta(int depth, int alpha, int beta, int player) { if (depth == MAX_DEPTH || check_win(player)) { return evaluate(player); } int best_value; if (player == BLACK) { best_value = -INF; for (int i = 0; i < BOARD_SIZE; i++) { for (int j = 0; j < BOARD_SIZE; j++) { if (board[i][j] == 0) { board[i][j] = BLACK; int value = alphabeta(depth + 1, alpha, beta, WHITE); board[i][j] = 0; if (value > best_value) { best_value = value; } if (best_value > alpha) { alpha = best_value; } if (beta <= alpha) { return best_value; } } } } } else { best_value = INF; for (int i = 0; i < BOARD_SIZE; i++) { for (int j = 0; j < BOARD_SIZE; j++) { if (board[i][j] == 0) { board[i][j] = WHITE; int value = alphabeta(depth + 1, alpha, beta, BLACK); board[i][j] = 0; if (value < best_value) { best_value = value; } if (best_value < beta) { beta = best_value; } if (beta <= alpha) { return best_value; } } } } } return best_value; } // 计算下一步最优的落子位置 struct point find_best_move(int player) { int best_value = -INF; struct point best_move; for (int i = 0; i < BOARD_SIZE; i++) { for (int j = 0; j < BOARD_SIZE; j++) { if (board[i][j] == 0) { board[i][j] = player; int value = alphabeta(0, -INF, INF, 3 - player); board[i][j] = 0; if (value > best_value) { best_value = value; best_move.x = i; best_move.y = j; } } } } return best_move; } // 主函数 int main() { // 初始化棋盘 for (int i = 0; i < BOARD_SIZE; i++) { for (int j = 0; j < BOARD_SIZE; j++) { board[i][j] = 0; } } // 下黑子 struct point black_move = find_best_move(BLACK); board[black_move.x][black_move.y] = BLACK; // 下白子 struct point white_move = find_best_move(WHITE); board[white_move.x][white_move.y] = WHITE; // 输出棋盘状态 for (int i = 0; i < BOARD_SIZE; i++) { for (int j = 0; j < BOARD_SIZE; j++) { if (board[i][j] == BLACK) { printf("X "); } else if (board[i][j] == WHITE) { printf("O "); } else { printf(". "); } } printf("\n"); } return 0; } ``` 该代码实现了一个简单的六子棋人机对战程序,使用了博弈搜索和α-β剪枝算法实现计算机的决策。其主要思路如下: 1. 定义棋盘和棋子类型; 2. 实现估值函数,计算当前棋盘状态对当前玩家的估值; 3. 实现判断当前玩家是否胜利的函数; 4. 实现α-β剪枝算法中的极大极小值搜索函数,计算当前局面下最优的落子位置; 5. 实现计算下一步最优的落子位置的函数; 6. 在主函数中完成人机对战的流程。 需要注意的是,该代码实现了一个简单的六子棋程序,其搜索深度和估值函数可能不够完善,因此其计算出的最优解可能并不是真正的最优解。如果需要实现更高效的六子棋程序,需要进一步优化其算法和估值函数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值