笔试-双指针算法突破
双指针技术是一种常用的算法技术,用于解决数组或链表中的问题,通常能以较低的时间复杂度解决问题。双指针可以被分为几种类型,包括对撞指针、快慢指针和滑动窗口等。这里,我将解释这些类型并提供一些示例问题及其解决方案。
1. 对撞指针
对撞指针通常用于排序数组或链表,两个指针分别从数组的起点和终点出发,向中间移动,直到它们相遇。这种方法常用于求和、查找或比较问题。
示例问题: 在有序数组中找到两个数,使它们的和为一个特定的数。
C++ 代码示例:
#include <vector>
using namespace std;
vector<int> twoSumSorted(vector<int>& nums, int target) {
int left = 0, right = nums.size() - 1;
while (left < right) {
int currentSum = nums[left] + nums[right];
if (currentSum == target) {
return {left, right};
} else if (currentSum < target) {
left++;
} else {
right--;
}
}
return {-1, -1};
}
Python 代码示例:
def two_sum_sorted(nums, target):
left, right = 0, len(nums) - 1
while left < right:
current_sum = nums[left] + nums[right]
if current_sum == target:
return [left, right]
elif current_sum < target:
left += 1
else:
right -= 1
return [-1, -1]
2. 快慢指针
快慢指针技术涉及两个指针以不同的速度在数组或链表中移动。这种方法常用于检测循环、找到循环的开始点或者找到中间点。
示例问题: 检测链表中是否存在环。
C++ 代码示例:
#include <iostream>
struct ListNode {
int val;
ListNode* next;
ListNode(int x) : val(x), next(nullptr) {}
};
bool hasCycle(ListNode* head) {
ListNode* slow = head;
ListNode* fast = head;
while (fast != nullptr && fast->next != nullptr) {
slow = slow->next;
fast = fast->next->next;
if (slow == fast) {
return true;
}
}
return false;
}
Python 代码示例:
class ListNode:
def __init__(self, val=0, next=None):
self.val = val
self.next = next
def has_cycle(head):
slow, fast = head, head
while fast and fast.next:
slow = slow.next
fast = fast.next.next
if slow == fast:
return True
return False
3. 滑动窗口
滑动窗口是一种双指针技术,用于创建一个可以在数组或链表上滑动的窗口。这种方法常用于找到满足特定条件的最长或最短的子数组或子串。
示例问题: 找到含有所有字符的最短子串。
C++ 代码示例:
#include <string>
#include <unordered_map>
#include <climits>
using namespace std;
string minWindow(string s, string t) {
unordered_map<char, int> t_count;
for (char c : t) {
t_count[c]++;
}
unordered_map<char, int> window;
int required = t_count.size();
int formed = 0;
int l = 0, r = 0;
int ans[3] = {INT_MAX, 0, 0}; // length, left, right
while (r < s.size()) {
char c = s[r];
window[c]++;
if (t_count.count(c) && window[c] == t_count[c]) {
formed++;
}
while (l <= r && formed == required) {
c = s[l];
if (r - l + 1 < ans[0]) {
ans[0] = r - l + 1;
ans[1] = l;
ans[2] = r;
}
window[c]--;
if (t_count.count(c) && window[c] < t_count[c]) {
formed--;
}
l++;
}
r++;
}
return ans[0] == INT_MAX ? "" : s.substr(ans[1], ans[2] - ans[1] + 1);
}
Python 代码示例:
def min_window(s, t):
from collections import Counter
t_count = Counter(t)
current_count = Counter()
begin, end = 0, 0
min_len = float('inf')
min_start = 0
required = len(t_count)
formed = 0
while end < len(s):
char = s[end]
current_count[char] += 1
if char in t_count and current_count[char] == t_count[char]:
formed += 1
while formed == required:
if end - begin + 1 < min_len:
min_len = end - begin + 1
min_start = begin
current_count[s[begin]] -= 1
if s[begin] in t_count and current_count[s[begin]] < t_count[s[begin]]:
formed -= 1
begin += 1
end += 1
return "" if min_len == float('inf') else s[min_start:min_start + min_len]
这些示例展示了双指针技术的多样性和实用性,可以高效地解决多种类型的问题。