第四章 数值积分与数值微分

第四章 数值积分与数值微分

4.1 Newton-cotes求积

将有限区间 [ a , b ] [a,b] [a,b]分成 n n n等份,取等距基点: a ≤ x 0 < x 1 < ⋅ ⋅ ⋅ < x n ≤ b a \leq x_0 <x_1<···<x_n \leq b ax0<x1<⋅⋅⋅<xnb,则可以先根据这些点求得 f ( x ) f(x) f(x)的插值函数,然后对插值函数进行求导(这样会方便一点的)。

当n=1时:
f ( x ) = x − x 1 x 0 − x 1 f 0 + x − x 0 x 1 − x 0 f 1 I = h 2 ( f 0 + f 1 ) E = − 1 12 h 3 f ′ ′ \begin{align} f(x)&=\frac{x-x_1}{x_0-x_1}f_0+\frac{x-x_0}{x_1-x_0}f_1\\ I &= \frac{h}{2}(f_0+f_1)\\ E &= -\frac{1}{12}h^3f^{\prime\prime} \end{align} f(x)IE=x0x1xx1f0+x1x0xx0f1=2h(f0+f1)=121h3f′′
当n = 2时:
f ( x ) = ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) f 0 + ( x − x 0 ) ( x − x 2 ) ( x 1 − x 0 ) ( x 1 − x 2 ) f 1 + ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) f 2 I = h 6 ( f ( x 0 ) + 4 f ( x 1 ) + f ( x 2 ) ) E = − 1 90 h 5 f ( 4 ) ( δ ) \begin{align} f(x)&=\frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}f_0+\frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}f_1+\frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)f_2}\\ I &= \frac{h}{6}(f(x_0)+4f(x_1)+f(x_2))\\ E &= -\frac{1}{90}h^5f^{(4)}(\delta) \end{align} f(x)IE=(x0x1)(x0x2)(xx1)(xx2)f0+(x1x0)(x1x2)(xx0)(xx2)f1+(x2x0)(x2x1)f2(xx0)(xx1)=6h(f(x0)+4f(x1)+f(x2))=901h5f(4)(δ)
当n= 4时:
I = h 90 [ 7 f ( x 0 ) + 32 f ( x 1 ) + 12 f ( x 2 ) + 32 f ( x 3 ) + 7 f ( x 4 ) ] E = − 8 945 h 7 f ( 6 ) ( δ ) \begin{align} I &= \frac{h}{90}[7f(x_0)+32f(x_1)+12f(x_2)+32f(x_3)+7f(x_4)]\\ E &= -\frac{8}{945}h^7f^{(6)}(\delta) \end{align} IE=90h[7f(x0)+32f(x1)+12f(x2)+32f(x3)+7f(x4)]=9458h7f(6)(δ)

4.2 复合积分

在区间 [ a , b ] [a,b] [a,b]中的小区间里使用积分公式进行积分,然后得到结果

4.3 变步长的求积公式

选定了某种积分方法之后,如何选择适当的 n n n,使得计算结果达到预先选定的精度?

针对于n=2的梯形公式
R ( f , T n ) = − b − a 12 h 2 f ′ ′ ( η n ) R ( f , T 2 n ) = − b − a 12 ( h 2 ) 2 f ′ ′ ( η 2 n ) T 2 n − T n = − b − a 12 ( h 2 ) 2 [ 4 f ′ ′ ( η n ) − f ′ ′ ( η 2 n ) ] 若充分大 , f ′ ( η ) 在 ( a , b ) 上连续且 f ′ ′ ( η n ) ≈ f ′ ′ ( η 2 n ) 则 T 2 n − T n = 3 ( I − T n ) I − T 2 n = 1 3 ( T 2 n − T n ) \begin{align} R(f,T_n)&=-\frac{b-a}{12}h^2f^{\prime\prime}(\eta_n)\\ R(f,T_{2n})&=-\frac{b-a}{12}(\frac{h}{2})^2f^{\prime\prime}(\eta_{2n})\\ T_2n - T_n&=-\frac{b-a}{12}(\frac{h}{2})^2[4f^{\prime\prime}(\eta_n)-f^{\prime\prime}(\eta_{2n})]\\ 若充分大&,f^{\prime}(\eta)在(a,b)上连续且f^{\prime\prime}(\eta_n)\thickapprox f^{\prime\prime}(\eta_{2n}) 则\\ T_{2n}-T_n&=3(I-T_n)\\ I-T_{2n}&=\frac{1}{3}(T_{2n}-T_n) \end{align} R(f,Tn)R(f,T2n)T2nTn若充分大T2nTnIT2n=12bah2f′′(ηn)=12ba(2h)2f′′(η2n)=12ba(2h)2[4f′′(ηn)f′′(η2n)],f(η)(a,b)上连续且f′′(ηn)f′′(η2n)=3(ITn)=31(T2nTn)
同理对于n=3的simpson公式有
I − T 2 n = 1 15 ( T 2 n − T n ) I-T_{2n} = \frac{1}{15}(T_{2n}-T_n) IT2n=151(T2nTn)
n=4的cotes公式有
I − T 2 n = 1 63 ( T 2 n − T n ) I-T_{2n}=\frac{1}{63}(T_{2n}-T_n) IT2n=631(T2nTn)

4.4 龙贝格公式

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

4.5 Gauss-Legendre求积公式

定义:

求积公式具有 2 n + 1 2n+1 2n+1次的代数精度,则称该求积公式为Gauss型求积公式。

节点的来源: G a u s s − L e g e n d r e Gauss-Legendre GaussLegendre公式的根

G u a s s − L e g e n d r e Guass-Legendre GuassLegendre公式:
P 0 ( x ) = 1 P 1 ( x ) = x P 2 ( x ) = 1 2 ( 3 x 2 − 1 ) … … P n ( x ) = 2 n − 1 n x P n − 1 ( x ) − n − 1 n P n − 2 ( x ) \begin{align} P_0(x)&=1\\ P_1(x)&=x\\ P_2(x)&=\frac{1}{2}(3x^2-1)\\ &……\\ P_n(x)&=\frac{2n-1}{n}xP_{n-1}(x)-\frac{n-1}{n}P_{n-2}(x) \end{align} P0(x)P1(x)P2(x)Pn(x)=1=x=21(3x21)……=n2n1xPn1(x)nn1Pn2(x)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值