第十章 常微分方程求解
10.1 Lipschitz条件
如果
f
(
t
,
y
)
f(t,y)
f(t,y)在区域
R
=
{
(
t
,
y
)
∣
a
≤
t
≤
b
,
−
∞
<
y
<
+
∞
}
R=\left\{(t,y)|a \leq t \leq b, -\infty<y<+\infty\right\}
R={(t,y)∣a≤t≤b,−∞<y<+∞}中连续且关于
y
y
y满足
L
i
p
s
c
h
i
t
z
Lipschitz
Lipschitz条件:存在常数
L
L
L使得
∣
f
(
t
,
y
1
)
−
f
(
t
,
y
2
)
∣
≤
L
∣
y
1
−
y
2
∣
|f(t,y_1)-f(t,y_2)|\leq L|y_1-y_2|
∣f(t,y1)−f(t,y2)∣≤L∣y1−y2∣
如果某方程有这样的特征,那么该问题有唯一解且稳定
10.2 Euler法
- Euler法: y n + 1 = y n + h f ( t n , y n ) y_{n+1}=y_n+hf(t_n,y_n) yn+1=yn+hf(tn,yn), O ( h 2 ) O(h^2) O(h2)
- 梯形方法: y ( t n + 1 ) = y ( t n ) + h 2 [ f ( t n , y n ) + f ( t n + 1 , y n + 1 ) ] y(t_{n+1})=y(t_n)+\frac{h}{2}[f(t_n,y_n)+f(t_{n+1},y_{n+1})] y(tn+1)=y(tn)+2h[f(tn,yn)+f(tn+1,yn+1)], O ( h 3 ) O(h^3) O(h3)
- 改进的Euler法: y n + 1 = y n + h 2 [ f ( t n , y n ) + f ( t n + 1 , y n + h f ( t n , y n ) ) ] y_{n+1}=y_n+\frac{h}{2}[f(t_n,y_n)+f(t_{n+1},y_n+hf(t_n,y_n))] yn+1=yn+2h[f(tn,yn)+f(tn+1,yn+hf(tn,yn))]
10.3 Runge-Kutta法
-
二阶 R u n g e − K u t t a Runge-Kutta Runge−Kutta法
y n + 1 = y n + h ( c 1 K 1 + c 2 K 2 ) K 1 = f ( t n , y n ) K 2 = f ( t n + a 2 h , y n + a 2 h K 1 ) c 1 = 2 a 2 − 1 2 a 2 , c 2 = 1 2 a 2 \begin{align} y_{n+1}&=y_n+h(c_1K_1+c_2K_2)\\ K_1 &= f(t_n,y_n)\\ K_2 &= f(t_n+a_2h,y_n+a_2hK_1)\\ c_1 &= \frac{2a_2-1}{2a_2},c_2 = \frac{1}{2a_2} \end{align} yn+1K1K2c1=yn+h(c1K1+c2K2)=f(tn,yn)=f(tn+a2h,yn+a2hK1)=2a22a2−1,c2=2a21 -
四阶 R u n g e − K u t t a Runge-Kutta Runge−Kutta法: O ( h 5 ) O(h^5) O(h5)
y n + 1 = y n + h 4 ( K 1 + 2 K 2 + 2 K 3 + K 4 ) K 1 = f ( t n , y n ) K 2 = f ( t n + 0.5 h , y n + 0.5 h K 1 ) K 3 = f ( t n + 0.5 h , y n + 0.5 h K 2 ) K 4 = f ( t n + h , y n + h K 3 ) \begin{align} y_{n+1}&=y_n+\frac{h}{4}(K_1+2K_2+2K_3+K_4)\\ K_1 &=f(t_n,y_n)\\ K_2 &=f(t_n+0.5h,y_n+0.5hK_1)\\ K_3 &=f(t_n+0.5h,y_n+0.5hK_2)\\ K_4 &=f(t_n+h,y_n+hK_3) \end{align} yn+1K1K2K3K4=yn+4h(K1+2K2+2K3+K4)=f(tn,yn)=f(tn+0.5h,yn+0.5hK1)=f(tn+0.5h,yn+0.5hK2)=f(tn+h,yn+hK3)
10.4 显式Adams方法
-
二步公式
y n + 1 = y n + h 2 ( 3 f n − f n − 1 ) y_{n+1}=y_n+\frac{h}{2}(3f_n-f_{n-1}) yn+1=yn+2h(3fn−fn−1) -
四步公式
y n + 1 = y n + h 24 ( 55 f n − 59 f n − 1 + 37 f n − 2 − 9 f n − 3 ) y_{n+1}=y_n+\frac{h}{24}(55f_n-59f_{n-1}+37f_{n-2}-9f_{n-3}) yn+1=yn+24h(55fn−59fn−1+37fn−2−9fn−3)
10.5 隐式Adams方法
-
一步公式
y n + 1 = y n + h 2 ( f n + 1 + f n ) y_{n+1}=y_n+\frac{h}{2}(f_{n+1}+f_n) yn+1=yn+2h(fn+1+fn) -
二步公式
y n + 1 = y n + h 12 ( 5 f n + 1 + 8 f n − f n − 1 ) y_{n+1}=y_n+\frac{h}{12}(5f_{n+1}+8f_n-f_{n-1}) yn+1=yn+12h(5fn+1+8fn−fn−1) -
三步公式
y n + 1 = y n + h 24 ( 9 f n + 1 + 19 f n − 5 f n − 1 + f n − 2 ) y_{n+1}=y_n+\frac{h}{24}(9f_{n+1}+19f_{n}-5f_{n-1}+f_{n-2}) yn+1=yn+24h(9fn+1+19fn−5fn−1+fn−2)
10.6 稳定性
设计算公式的准确值为
y
i
y_i
yi,其计算解为
y
‾
i
\overline y_i
yi,设
δ
i
=
y
i
−
y
‾
i
\delta_i=y_i-\overline y_i
δi=yi−yi
如果第
i
i
i步之后各部计算没有引进计算误差,即
∣
δ
j
∣
≤
∣
δ
i
∣
,
j
=
i
+
1
,
i
+
2
,
.
.
.
,
n
|\delta_j| \leq |\delta_i|, j = i+1,i+2,...,n
∣δj∣≤∣δi∣,j=i+1,i+2,...,n
则称计算公式是绝对稳定的。