普通集合--特征函数
模糊集合--隶属函数(member function)
一.
模糊集合诞生于1965年,由美国L.A.Zadeh教授首先提出,他采用隶属函数来描述一些模糊的和不确定的概念,并创立了模糊集合论。
模糊集合的若干定义:高度(hgt(A))--上确界,深度((dph(A)))--下确界
支集
核
模糊单点
全集 空集
二.模糊集合表示方法
1.论域为离散集
(1)序偶表示
(2)向量表示
(3)Zadeh表示
2.论域为连续域
L.A.Zadeh表示法
三.运算
相等 包含 交(min) 并(max) 不(1 - member_function)
幂等律 交换律等性质
两个模糊集合的交集运算 T 范式算子 二元
"""""""""""""""""""""并集 S """""""""""""""""""
四.member function
几种常用的,选择最合适的
1.三角形MF
2.梯形MF
3.正态形MF
4.钟形MF
5.Sigmoid-MF:左开S-MF 右开S-MF
三角形和梯形表达式简单,计算效率搞,但在参数指定的拐点处不光滑。
正态形和钟形表达式稍复杂,计算量相应增大,但函数曲线平滑,在有些应用场合显得十分重要。
五.分解定理
模糊集合问题--->普通集合问题
λ-截集:模糊集合-->普通集合
六.扩展原理
L.A.Zadeh在1975年提出了著名的扩展原理,用于确定模糊集合在进行映射之后的member function,它将普通函数f中点到点的映射一般化到模糊集合之间的映射。
模糊集合A映射到模糊集合B后,对应点的隶属度保持不变。
若f为多值映射,则取A的隶属度最大值作为B的隶属度。