POJ1321棋盘问题(DFS技巧小应用)

纪念第一次网吧A题。
先贴链接膜一下小優YoU
小優YoU: DFS,没想法就很难很难,有想法就很容易的题
唉,的确是这样,看完大神的代码,一边豁然开朗,一边想敲自己脑袋瓜子,真轴!!!
思考了一下,得出的结论是:DFS还没有运用熟练,理解还没有那么透彻,思维还没有那么活跃。

题目大意:
给一个n*n的棋盘,由“.”和“#”组成,“#”上可以放棋子,“.”上不能放棋子。在这个棋盘上放k个棋子,满足任何一个棋子都不在同一行且同一列,求摆放方案的数目。

(PS:说实话,中文题,我把“.”和“#”的作用搞混了,从头恶心到尾?????)

思路:
一开始我的想法是:从第一行开始,在1-n列摆放,设一个标记数组,表示哪一列已经访问过了。然后到下一行,也从1-n选一个未被标记过的列,以此递归求解。

但是,写完之后才发现不太对:第一行不一定放棋子,它的下一行也不一定要放棋子!

woc,这咋办啊,我怎么来模拟不放呢,怎么选择这次放不放呢???然后就是各种暴力脑洞…然后心态就开始逐渐爆炸了,最终打开了百度…
看了好几篇博客,还是觉得小優YoU的代码能在我伤口上撒最多的盐。
就那么一行代码,就体现出了思维。

	dfs(row+1,num);

言归正传。
老规矩,dfs四小步:当前操作、结束条件、搜索过程、回溯

void dfs(int row,int num)
{
    ///结束条件
    if(num==k){
        ans++;
        return;
    }
    if(row>=n)
        return;


    ///搜索过程
    for(int i=0;i<n;i++){
        ///下一行遍历一整行
        ///如果该列已经被访问过,那么跳过
        if(!book[i]&&mapp[row][i]=='#'){
            book[i]=true;
            dfs(row+1,num+1);
            ///回溯
            book[i]=false;
        }
    }

    ///本行不放棋子
    dfs(row+1,num);

}

①当前操作:无
②结束条件:有两个:一个是已经摆放的棋子个数num==k了,另一个是搜索越界。

	///结束条件
    if(num==k){
        ans++;
        return;
    }
    if(row>=n)
        return;

③搜索过程:从0~n-1列遍历,找到还未被访问过的列,且该位置能够摆放棋子的位置,然后:标记、递归、回溯

	///搜索过程
    for(int i=0;i<n;i++){
        ///下一行遍历一整行
        ///如果该列已经被访问过,或者该位置不能摆放棋子,那么跳过
        if(!book[i]&&mapp[row][i]=='#'){
            book[i]=true;
            dfs(row+1,num+1);
            ///回溯
            book[i]=false;
        }
    }

④回溯:这里的回溯应该比较好理解,不同的摆放方案的“前半段”可能是一样的,在找到一种解决方案之后return,需要将之前访问时做的标记恢复原样,以免对其他后续方案造成影响。

然后就要说重中之重了!!!!划重点!!!!!
如何解决不对本行进行操作的模拟?
精髓代码来啦!

dfs(row+1,num);

row+1代表进入下一行的递归,num代表我的摆放棋子个数不加一进入下一层的递归,即,本行不进行操作,把“接力棒”——num带入下一行进行递归。

有人可能会疑问:你上边的代码不是已经在for循环进行了操作吗?怎么加上这一行就不操作了?
有这个疑问的同学,说明你对递归理解的还不够,动手画画递归树,认真想一想吧!

附上伪AC代码(POJ炸了11个小时了,代码还没测试,不过问题应该不大)

#include<stdio.h>
#include<string.h>
#define maxn 8
char mapp[maxn][maxn];
int ans,n,k;
bool book[maxn];
void dfs(int row,int num)
{
    ///结束条件
    if(num==k){
        ans++;
        return;
    }
    if(row>=n)
        return;


    ///搜索过程
    for(int i=0;i<n;i++){
        ///下一行遍历一整行
        ///如果该列已经被访问过,或者该位置不能摆放棋子,那么跳过
        if(!book[i]&&mapp[row][i]=='#'){
            book[i]=true;
            dfs(row+1,num+1);
            ///回溯
            book[i]=false;
        }
    }

    ///本行不放棋子
    dfs(row+1,num);

}
int main()
{
    while(~scanf("%d%d",&n,&k))
    {
        if(n==-1&&k==-1)
            break;

        for(int i=0;i<n;i++)
            scanf("%s",mapp[i]);
        ans=0;
        memset(book,false,sizeof(book));

        dfs(0,0);

        printf("%d\n",ans);
    }
    return 0;
}

POJ 1321 排兵布阵问题可以使用 DFS 算法求解。 题目要求在一个 n x n 的棋盘上,放置 k 个棋子,其中每行、每列都最多只能有一个棋子。我们可以使用 DFS 枚举每个棋子的位置,对于每个棋子,尝试将其放置在每一行中未被占用的位置上,直到放置了 k 个棋子。在 DFS 的过程中,需要记录每行和每列是否已经有棋子,以便在尝试放置下一个棋子时进行判断。 以下是基本的 DFS 模板代码: ```python def dfs(row, cnt): global ans if cnt == k: ans += 1 return for i in range(row, n): for j in range(n): if row_used[i] or col_used[j] or board[i][j] == '.': continue row_used[i] = col_used[j] = True dfs(i + 1, cnt + 1) row_used[i] = col_used[j] = False n, k = map(int, input().split()) board = [input() for _ in range(n)] row_used = [False] * n col_used = [False] * n ans = 0 dfs(0, 0) print(ans) ``` 其中,row 代表当前尝试放置棋子的行数,cnt 代表已经放置的棋子数量。row_used 和 col_used 分别表示每行和每列是否已经有棋子,board 则表示棋盘的状态。在尝试放置棋子时,需要排除掉无法放置的位置,即已经有棋子的行和列,以及棋盘上标记为 '.' 的位置。当放置了 k 个棋子时,即可计数一次方案数。注意,在回溯时需要将之前标记为已使用的行和列重新标记为未使用。 需要注意的是,在 Python 中,递归深度的默认限制为 1000,可能无法通过本题。可以通过以下代码来解除限制: ```python import sys sys.setrecursionlimit(100000) ``` 完整代码如下:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值