纪念第一次网吧A题。
先贴链接膜一下小優YoU
小優YoU: DFS,没想法就很难很难,有想法就很容易的题
唉,的确是这样,看完大神的代码,一边豁然开朗,一边想敲自己脑袋瓜子,真轴!!!
思考了一下,得出的结论是:DFS还没有运用熟练,理解还没有那么透彻,思维还没有那么活跃。
题目大意:
给一个n*n的棋盘,由“.”和“#”组成,“#”上可以放棋子,“.”上不能放棋子。在这个棋盘上放k个棋子,满足任何一个棋子都不在同一行且同一列,求摆放方案的数目。
(PS:说实话,中文题,我把“.”和“#”的作用搞混了,从头恶心到尾?????)
思路:
一开始我的想法是:从第一行开始,在1-n列摆放,设一个标记数组,表示哪一列已经访问过了。然后到下一行,也从1-n选一个未被标记过的列,以此递归求解。
但是,写完之后才发现不太对:第一行不一定放棋子,它的下一行也不一定要放棋子!
woc,这咋办啊,我怎么来模拟不放呢,怎么选择这次放不放呢???然后就是各种暴力脑洞…然后心态就开始逐渐爆炸了,最终打开了百度…
看了好几篇博客,还是觉得小優YoU的代码能在我伤口上撒最多的盐。
就那么一行代码,就体现出了思维。
dfs(row+1,num);
言归正传。
老规矩,dfs四小步:当前操作、结束条件、搜索过程、回溯
void dfs(int row,int num)
{
///结束条件
if(num==k){
ans++;
return;
}
if(row>=n)
return;
///搜索过程
for(int i=0;i<n;i++){
///下一行遍历一整行
///如果该列已经被访问过,那么跳过
if(!book[i]&&mapp[row][i]=='#'){
book[i]=true;
dfs(row+1,num+1);
///回溯
book[i]=false;
}
}
///本行不放棋子
dfs(row+1,num);
}
①当前操作:无
②结束条件:有两个:一个是已经摆放的棋子个数num==k了,另一个是搜索越界。
///结束条件
if(num==k){
ans++;
return;
}
if(row>=n)
return;
③搜索过程:从0~n-1列遍历,找到还未被访问过的列,且该位置能够摆放棋子的位置,然后:标记、递归、回溯。
///搜索过程
for(int i=0;i<n;i++){
///下一行遍历一整行
///如果该列已经被访问过,或者该位置不能摆放棋子,那么跳过
if(!book[i]&&mapp[row][i]=='#'){
book[i]=true;
dfs(row+1,num+1);
///回溯
book[i]=false;
}
}
④回溯:这里的回溯应该比较好理解,不同的摆放方案的“前半段”可能是一样的,在找到一种解决方案之后return,需要将之前访问时做的标记恢复原样,以免对其他后续方案造成影响。
然后就要说重中之重了!!!!划重点!!!!!
如何解决不对本行进行操作的模拟?
精髓代码来啦!
dfs(row+1,num);
row+1代表进入下一行的递归,num代表我的摆放棋子个数不加一进入下一层的递归,即,本行不进行操作,把“接力棒”——num带入下一行进行递归。
有人可能会疑问:你上边的代码不是已经在for循环进行了操作吗?怎么加上这一行就不操作了?
有这个疑问的同学,说明你对递归理解的还不够,动手画画递归树,认真想一想吧!
附上伪AC代码(POJ炸了11个小时了,代码还没测试,不过问题应该不大)
#include<stdio.h>
#include<string.h>
#define maxn 8
char mapp[maxn][maxn];
int ans,n,k;
bool book[maxn];
void dfs(int row,int num)
{
///结束条件
if(num==k){
ans++;
return;
}
if(row>=n)
return;
///搜索过程
for(int i=0;i<n;i++){
///下一行遍历一整行
///如果该列已经被访问过,或者该位置不能摆放棋子,那么跳过
if(!book[i]&&mapp[row][i]=='#'){
book[i]=true;
dfs(row+1,num+1);
///回溯
book[i]=false;
}
}
///本行不放棋子
dfs(row+1,num);
}
int main()
{
while(~scanf("%d%d",&n,&k))
{
if(n==-1&&k==-1)
break;
for(int i=0;i<n;i++)
scanf("%s",mapp[i]);
ans=0;
memset(book,false,sizeof(book));
dfs(0,0);
printf("%d\n",ans);
}
return 0;
}