题目描述
把只包含因子2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14不是,因为它包含因子7。 习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第N个丑数。
这一题我想了很久,自己想的方法时间复杂度都太高,所有都超时了,导致一上午都在纠结这个问题,最后看别人的答案才知道大神都是怎么解决这个问题的,仔细想想,还是自己的算法基础不太好。好了,废话不多说,直接上思路。
遍历法:时间效率低下
使用遍历法求第k个丑数,从1开始遍历,如果是丑数则count++,直到count=k为止。那么如何判断丑数呢?根据丑数的定义,丑数只有2,3,5这三个因子,那么我们就拿数字除以这三个因子。具体算法如下:
Step1
.如果一个数能够被2整除,那么让他继续除以2;
Step2
.如果一个数能够被3整除,那么让他继续除以3;
Step3
.如果一个数能够被5整除,那么让他继续除以5;
Step4
.如果最后这个数变为1,那么这个数就是丑数,否则不是。
public int GetUglyNumber(int index)
{
if (index <= 0)
{
return 0;
}
int number = 0;
int uglyCount = 0;
while (uglyCount < index)
{
number++;
if (IsUgly(number))
{
uglyCount++;
}
}
return number;
}
private bool IsUgly(int number)
{
while (number % 2 == 0)
{
number /= 2;
}
while (number % 3 == 0)
{
number /= 3;
}
while (number % 5 == 0)
{
number /= 5;
}
return number == 1 ? true : false;
}
该算法非常直观,代码也非常简洁,但最大的问题就在于每个整数都需要计算。即使一个数字不是丑数,我们还是需要对它做求余数和除法操作。因此该算法的时间效率不是很高,
空间换时间法:时间效率较高
根据丑数的定义,我们可以知道丑数可以由另外一个丑数乘以2,3或者5得到。因此我们可以创建一个数组,里面的数字是排好序的丑数,每一个丑数都是前面的丑数乘以2,3或者5得到的。
我们把得到的第一个丑数乘以2以后得到的大于M的结果记为M2。同样,我们把已有的每一个丑数乘以3和5,能得到第一个大于M的结果M3和M5。那么M后面的那一个丑数应该是M2,M3和M5当中的最小值:Min(M2,M3,M5)
。
比如将丑数数组中的数字按从小到大乘以2,直到得到第一个大于M的数为止,那么应该是2*2=4<M,3*2=6>M,所以M2=6。同理,M3=6,M5=10。所以下一个丑数应该是6。
根据以上思路实现代码如下:
public int GetUglyNumber(int index)
{
if (index <= 0)
{
return 0;
}
int[] uglyNumbers = new int[index];
uglyNumbers[0] = 1;
int nextUglyIndex = 1;
int multiply2 = 0;
int multiply3 = 0;
int multiply5 = 0;
int min = 0;
while (nextUglyIndex < index)
{
min = Min(uglyNumbers[multiply2] * 2, uglyNumbers[multiply3] * 3, uglyNumbers[multiply5] * 5);
uglyNumbers[nextUglyIndex] = min;
while (uglyNumbers[multiply2] * 2 <= uglyNumbers[nextUglyIndex])
{
multiply2++;
}
while (uglyNumbers[multiply3] * 3 <= uglyNumbers[nextUglyIndex])
{
multiply3++;
}
while (uglyNumbers[multiply5] * 5 <= uglyNumbers[nextUglyIndex])
{
multiply5++;
}
nextUglyIndex++;
}
int result = uglyNumbers[index - 1];
uglyNumbers = null;
return result;
}
private int Min(int num1, int num2, int num3)
{
int min = num1 < num2 ? num1 : num2;
min = min < num3 ? min : num3;
return min;
}
和第一种方案相比,第二种方案不需要在非丑数的整数上做任何计算,因此时间效率有明显提升。但也需要指出,第二种算法由于需要保存已经生成的丑数,因此需要一个数组,从而增加了空间消耗。如果是求第1500个丑数,将创建一个能容纳1500个丑数的数组,这个数组占内存6KB。