递归的定义
递归,就是在运行的过程中调用自己。
递归必须要有三个要素:
①、边界条件
②、递归前进段
③、递归返回段
当边界条件不满足时,递归前进;当边界条件满足时,递归返回。
实例:
利用递归求一个数的阶乘
n! = n*(n-1)*(n-2)*......1
规定:
①、0!=1
②、1!=1
③、负数没有阶乘
//利用递归进行求一个数的乘层
public static int getFactorialFor(int n){
if((1 == n)||(0 == n)){
return 1;
}else{
return n*getFactorialFor(n-1);
}
}
递归的二分查找
注意:二分查找的数组一定是有序的!!!
在有序数组array[]中,不断将数组的中间值(mid)和被查找的值比较,如果被查找的值等于array[mid],就返回下标mid; 否则,就将查找范围缩小一半。如果被查找的值小于array[mid], 就继续在左半边查找;如果被查找的值大于array[mid], 就继续在右半边查找。 直到查找到该值或者查找范围为空时, 查找结束。
//利用递归进行二分查找
public static int findTwoPoint(int[] array,int key,int low,int height){
int mid = (low + height) / 2;
if(((0 == mid) || ((array.length - 1) == mid))&&(array[mid] != key)){
return -1;
}
if(array[mid] == key){
return mid;
}else if(array[mid] > key){
return findTwoPoint(array,key,low,mid-1);
}else if(array[mid] < key){
return findTwoPoint(array,key,mid+1,height);
}
return -1;
}
归并排序
归并算法的中心是归并两个已经有序的数组。归并两个有序数组A和B,就生成了第三个有序数组C。数组C包含数组A和B的所有数据项。
归并排序的思想是把一个数组分成两半,排序每一半,然后用上面的sort()方法将数组的两半归并成为一个有序的数组。如何来为每一部分排序呢?这里我们利用递归的思想:
把每一半都分为四分之一,对每个四分之一进行排序,然后把它们归并成一个有序的一半。类似的,如何给每个四分之一数组排序呢?把每个四分之一分成八分之一,对每个八分之一进行排序,以此类推,反复的分割数组,直到得到的子数组是一个数据项,那这就是这个递归算法的边界值,也就是假定一个数据项的元素是有序的。
public static int[] mergeSort(int[] c,int start,int last){
if(last > start){
//也可以是(start+last)/2,这样写是为了防止数组长度很大造成两者相加超过int范围,导致溢出
int mid = start + (last - start)/2;
mergeSort(c,start,mid);//左边数组排序
mergeSort(c,mid+1,last);//右边数组排序
merge(c,start,mid,last);//合并左右数组
}
return c;
}
public static void merge(int[] c,int start,int mid,int last){
int[] temp = new int[last-start+1];//定义临时数组
int i = start;//定义左边数组的下标
int j = mid + 1;//定义右边数组的下标
int k = 0;
while(i <= mid && j <= last){
if(c[i] < c[j]){
temp[k++] = c[i++];
}else{
temp[k++] = c[j++];
}
}
//把左边剩余数组元素移入新数组中
while(i <= mid){
temp[k++] = c[i++];
}
//把右边剩余数组元素移入到新数组中
while(j <= last){
temp[k++] = c[j++];
}
//把新数组中的数覆盖到c数组中
for(int k2 = 0 ; k2 < temp.length ; k2++){
c[k2+start] = temp[k2];
}
}