递归
简单介绍:
简单的说: 递归就是方法自己调用自己,每次调用时传入不同的变量.递归有助于编程者解决复杂的问题,同时可以让代码变得简洁。
递归需要遵守的重要规则
- 执行一个方法时,就创建一个新的受保护的独立空间(栈空间)
- 方法的局部变量是独立的,不会相互影响, 比如 n 变量
- 如果方法中使用的是引用类型变量(比如数组),就会共享该引用类型的数据.
- 递归必须向退出递归的条件逼近,否则就是无限递归,出现 StackOverflowError.
- 当一个方法执行完毕,或者遇到 return,就会返回,遵守谁调用,就将结果返回给谁,同时当方法执行完毕或 者返回时,该方法也就执行完毕.
迷宫问题
代码实现
package bilibili.recursion;
public class MiGong {
public static void main(String[] args) {
int[][] map = new int[8][7];
//设置墙,不能走的位置
for (int i = 0; i < 7; i++) {
map[0][i] = 1;
map[7][i] = 1;
}
for (int i = 0; i < 8; i++) {
map[i][0] = 1;
map[i][6] = 1;
}
map[3][1] = 1;
map[3][2] = 1;
boolean flag = way(map,1,1);
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 7; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
}
//找路的方法,下,左,右,上
//1表示墙,2表示可以走,3表示走过但不能走
public static boolean way(int map[][],int i,int j){
if(map[6][5] == 2){
return true;
}
if(map[i][j] == 0){
map[i][j] = 2;
if(way(map,i+1,j)){
return true;
}else if(way(map,i,j-1)){
return true;
}else if(way(map,i,j+1)){
return true;
}else if(way(map,i-1,j)){
return true;
}else {
map[i][j] =3;
return false;
}
}else {
return false;
}
}
}
八皇后问题
八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于 1848 年提出:在 8×8 格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行、 同一列或同一斜线上,问有多少种摆法(92)
思路分析
- 第一个皇后先放第一行第一列
- 第二个皇后放在第二行第一列、然后判断是否 OK, 如果不 OK,继续放在第二列、第三列、依次把所有列都 放完,找到一个合适
- 继续第三个皇后,还是第一列、第二列……直到第 8 个皇后也能放在一个不冲突的位置,算是找到了一个正确 解
- 当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解, 全部得到.
- 然后回头继续第一个皇后放第二列,后面继续循环执行 1,2,3,4 的步骤
说明
理论上应该创建一个二维数组来表示棋盘,但是实际上可以通过算法,用一个一维数组即可解决问题. arr[8] = {0 , 4, 7, 5, 2, 6, 1, 3} //对应 arr 下标 表示第几行,即第几个皇后,arr[i] = val , val 表示第 i+1 个皇后,放在第 i+1 行的第 val+1 列
代码实现
package bilibili.recursion;
public class Queue8 {
int max = 8;
int[] array = new int[max];
static int count = 0;
static int judgeCount = 0;
public static void main(String[] args) {
Queue8 queue8 = new Queue8();
queue8.push(0);
System.out.println("count= " + count );
System.out.println("judgeCount= " + judgeCount);
}
//编写一个方法,放入皇后
//n表示第n+1个
public void push(int n) {
if (n == 8) {
print();
return;
}
for (int i = 0; i < max; i++) {//从第一列到第8列
array[n] = i;
if (judgeCheck(n)) {
push(n + 1);
}
}
}
public boolean judgeCheck(int n) {
judgeCount++;
for (int i = 0; i < n; i++) {//与之前的皇后位置比较
//第一个条件表示列相同
//第二个条件表示在同一个斜线上
if (array[i] == array[n] || Math.abs(n - i) == Math.abs(array[n] - array[i])) {
return false;
}
}
return true;
}
public void print() {
count++;
for (int i = 0; i < array.length; i++) {
System.out.print(array[i] + " ");
}
System.out.println();
}
}