nihate
码龄12年
关注
提问 私信
  • 博客:269,284
    社区:370
    问答:8,766
    动态:37
    视频:28,944
    307,401
    总访问量
  • 29
    原创
  • 29,838
    排名
  • 1,926
    粉丝
  • 122
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2012-07-13
博客简介:

nihate的专栏

查看详细资料
个人成就
  • 获得530次点赞
  • 内容获得504次评论
  • 获得2,061次收藏
  • 代码片获得651次分享
创作历程
  • 1篇
    2023年
  • 1篇
    2022年
  • 7篇
    2021年
  • 10篇
    2020年
  • 5篇
    2019年
  • 4篇
    2018年
  • 2篇
    2013年
成就勋章
TA的专栏
  • 深度学习推理部署
    1篇
  • 深度学习
    12篇
  • 计算机视觉
    13篇
  • Python
    7篇
  • 人工智能
    10篇
  • pytorch
    4篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉caffe深度学习pytorchscikit-learn
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

LivePortrait

发布视频 2024.08.05

output2

发布视频 2023.12.28

output

发布视频 2023.08.12

pytorch和numpy在meshgrid函数的一些差异

这说明在numpy库里的meshgrid函数,y不是在x前面的。交换一下x,y的顺序,也就是把上面的make_anchors_numpy函数注释的那一行 sx, sy = np.meshgrid(x, y) 打开,重新运行程序,这时候打印的差异值是0。在YOLO系列的目标检测模型的后处理,有一个生成meshgrid网格的操作,这时是调用torch.meshgrid函数实现的,不过在numpy里也有meshgrid函数。运行这个程序,最后打印的差异值是26.6625。
原创
发布博客 2023.05.13 ·
255 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

人工智能+工业互联网,如何破圈?

人工智能+工业互联网,如何破圈?
原创
发布博客 2022.08.31 ·
707 阅读 ·
3 点赞 ·
2 评论 ·
3 收藏

关于opencv dnn实现神经网络的问题

答:

在我的用opencv部署yolov5的文章的最后,发布的虚拟试衣的代码里,就有在opencv的 dnn模块里自定义层的
...

回答问题 2021.09.28

pytorch计算余弦相似度需要注意的一个问题

最近在知乎上看到一篇文章,里面讲到在pytorch里自带有计算余弦相似度的函数F.cosine_similarity(或者torch.cosine_similarity函数)。而在此之前,我计算两个张量的余弦相似度的做法是把张量转换到numpy,然后用scipy库(或者sklearn库)里提供的计算余弦相似度函数来做计算的。不过,在今天我发现使用F.cosine_similarity函数计算两个张量的余弦相似度的输出值与把张量转换到numpy然后用scipy库计算的输出值不一样。示例代码如下:impo
原创
发布博客 2021.05.26 ·
9453 阅读 ·
12 点赞 ·
6 评论 ·
7 收藏

模型部署翻车记:pytorch转onnx踩坑实录

本文原创首发于极市平台公众号,如需转载请私信作者在深度学习模型部署时,从pytorch转换onnx的过程中,踩了一些坑。本文总结了这些踩坑记录,希望可以帮助其他人。首先,简单说明一下pytorch转onnx的意义。在pytorch训练出一个深度学习模型后,需要在TensorRT或者openvino部署,这时需要先把Pytorch模型转换到onnx模型之后再做其它转换。因此,在使用pytorch训练深度学习模型完成后,在TensorRT或者openvino或者opencv和onnxruntime部署时
原创
发布博客 2021.04.08 ·
4957 阅读 ·
14 点赞 ·
10 评论 ·
36 收藏

使用opencv部署yolact实例分割

本文原创首发于极市平台公众号,如需转载请私信作者YOLACT,全称为:You Only Look At CoefficienTs,从标题可以看出这个模型的名称有些致敬YOLO的意思。YOLACT是2019年ICCV会议论文,它是在现有的一阶段(one-stage)目标检测模型里添加掩模分支。而经典的mask-rcnn是两阶段实例分割模型是在faster-rcnn(两阶段目标检测模型)添加掩模分支,但是在YOLACT里没有feature roi pooling这个步骤。因而,YOLACT是一个单阶段实例分
原创
发布博客 2021.03.07 ·
2424 阅读 ·
5 点赞 ·
25 评论 ·
31 收藏

用opencv部署nanodet目标检测

本文原创首发于极市平台公众号,如需转载请私信作者2020年,在深度学习目标检测领域诞生了yolov4,yolov5和nanodet这些优秀的检测模型,有许多的微信公众号报道这些算法模型。深度学习目标检测方法可划分为 Anchor-base 和 Anchor-free 两大类,nanodet是一个速度超快和轻量级的移动端 Anchor-free 目标检测模型,并且它的精度不亚于yolo系列的。nanodet通过一些论文里的trick组合起来得到了一个兼顾精度、速度和体积的检测模型。作者用到的一些tri
原创
发布博客 2021.02.18 ·
5091 阅读 ·
19 点赞 ·
24 评论 ·
54 收藏

opencv的Mat结构里需要注意的细节

在使用opencv的dnn模块做深度学习时,经常会遇到一个疑惑。疑惑是这样的:当执行完outs = net.forward()之后,如果outs里有Mat的维数大于2,那么设断点调试的时候,可以看到rows和cols都等于-1,以目标检测为例,输出outs里包含box和score,断点调试查看out_score的信息如下:但是最后看程序运行的可视化结果,是没问题的。这个疑惑,在opencv源码里可以找到解释,在mat.hpp文件,第2559行至2561行,中间的注释里说:当矩阵的维数大于2时,row
原创
发布博客 2021.02.18 ·
879 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

opencv::dnn::readNetFromONNX读取yolov5转出的onnx模型失败。

答:

那这是c++代码的问题,比较一下Python版本的和C++版本代码有何差异

回答问题 2021.02.06

python录制全屏和选择区域录屏

最近给客户演示程序运行结果,我就想到用Python写一个录屏程序,在网上能找到现成的源码,但是它的录屏是录制整个屏幕的。但是在屏幕桌面下方的任务栏工具栏里有些东西,不希望被录制到视频里,因此需要实现一个选择区域录屏,就像qq截图那样的。我编写的程序如下,在主函数的输入参数里有一个选项控制是全屏录制还是选择区域录制import cv2from PIL import ImageGrabimport numpy as npimport argparseimport timeglobal img
原创
发布博客 2021.02.04 ·
1274 阅读 ·
1 点赞 ·
7 评论 ·
2 收藏

opencv::dnn::readNetFromONNX读取yolov5转出的onnx模型失败。

答:

需要更换索引式的切片操作,解决办法可以参考我的文章 

https://blog.csdn.net/nihate/article/details/112731327#comments_14884604

回答问题 2021.02.03

用opencv的dnn模块做yolov5目标检测

最近在微信公众号里看到多篇讲解yolov5在openvino部署做目标检测文章,但是没看到过用opencv的dnn模块做yolov5目标检测的。于是,我就想着编写一套用opencv的dnn模块做yolov5目标检测的程序。在编写这套程序时,遇到的bug和解决办法,在这篇文章里讲述一下。在yolov5之前的yolov3和yolov4的官方代码都是基于darknet框架的实现的,因此opencv的dnn模块做目标检测时,读取的是.cfg和.weight文件,那时候编写程序很顺畅,没有遇到bug。但是yolo
原创
发布博客 2021.01.17 ·
76667 阅读 ·
288 点赞 ·
298 评论 ·
1288 收藏

yolov5.yaml文件转换到.py文件

在ultralytics官方的yolov5代码里,模型的构建都是定义在yaml文件里的,在yaml文件里,有两个重要参数:depth_multiple和width_multiple。其中depth_multiple控制网络的深度,width_multiple控制网络的宽度。这样做的好处是可以通过这两个参数控制网络的宽度和深度,实现不同大小不同复杂度的模型设计,但是这种写法缺点是不再能直接采用第三方工具例如netron进行网络模型可视化了,并且yaml文件不利于学习网络结构特性和网络里的层与层之间的连接关系。
原创
发布博客 2020.11.19 ·
1819 阅读 ·
5 点赞 ·
4 评论 ·
15 收藏

一种适合工业级应用的基于深度学习的实时人脸检测与识别算法的C++实现

在此之前我写过一篇文章比较了最近一年内的基于深度学习的人脸检测算法的精度和速度,在稀疏人脸场景里,libfacedetect是最佳选择。于是我就用C++编写了一套人脸检测与识别的程序,在这套程序中,人脸检测模块使用的是libfacedetect,这个模块了还包含了人脸对齐的功能,人脸特征向量提取模块使用的是arcface,此外我还提供了人脸关键点检测模块PFLD,它能输出98个人脸关键点。程序设计采用了面向对象的思想,把每个模块都用一个类包装起来。整个程序的运行只依赖opencv库,使用dnn模块做深度学习
原创
发布博客 2020.11.02 ·
1453 阅读 ·
4 点赞 ·
3 评论 ·
9 收藏

4种YOLO目标检测的C++和Python两种版本实现

2020年,新出了几个新版本的YOLO目标检测,在微信朋友圈里转发的最多的有YOLOv4,Yolo-Fastest,YOLObile以及百度提出的PP-YOLO。在此之前,我在github是哪个已经发布过YOLOv4,Yolo-Fastest,YOLObile这三种YOLO基于OpenCV做目标检测的程序,但是这些程序是用Python编写的。接下来,我就使用C++编写一套基于OpenCV的YOLO目标检测,这个程序里包含了经典的YOLOv3,YOLOv4,Yolo-Fastest和YOLObile这4种YO
原创
发布博客 2020.09.28 ·
12408 阅读 ·
35 点赞 ·
57 评论 ·
235 收藏

10种轻量级人脸检测算法的比拼

最近在微信公众号里看到轻量级人脸检测算法大盘点的文章,里面还提供了github源码地址,我就把它们逐个下载到本地win10-cpu机器上,调试通过运行。去年在github下载过一个包含6种人脸检测的程序(地址是 https://github.com/cs-giung/face-detection-pytorch),分别是pyramidbox,dsfd,s3fd,tinyface,facebox,mtcnn,但是这些算法大多是重量级的网络模型,它在一幅图片上的人脸检测结果和运行耗时统计直方图如下可
原创
发布博客 2020.09.25 ·
17078 阅读 ·
60 点赞 ·
35 评论 ·
165 收藏

CenterFace人脸检测程序中的一个不为人知的bug

程序是用opencv的dnn模块加载CenterFace的onnx文件做人脸检测的,程序源码在github地址是https://github.com/hpc203/CenterFace-opencv-dnn-problem文件夹里有2幅图片,运行 python problem.py,其中problem.py的源码如下import cv2from centerface import CenterFaceif __name__ == '__main__': frame = cv2.im.
原创
发布博客 2020.09.24 ·
553 阅读 ·
0 点赞 ·
3 评论 ·
0 收藏
加载更多