在做深度学习目标检测和语义分割的训练时,会有读取图片这个模块流程,在读取图片时,有些人习惯使用opencv,有些人习惯使用PIL。在做语义分割时,需要读取图片和标签mask,而标签mask也是一幅图片,而在读取了标签mask后,会把它转成灰度图,图片中的像素值表示类别索引。然而用opencv和PIL读取图片时,是有差别的。看如下代码示例:
import numpy as np from PIL import Image import cv2
if __name__ == "__main__": cvimg = cv2.imread('mask.png') pilimg = Image.open('mask.png') pilimg = np.array(pilimg) print(cvimg.shape) print(pilimg.shape)
运行结果是:
(498, 652, 3)
(498, 652)
可以看到,用opencv读取图片后,图片是3通道的,这时候需要执行 cvimg = cv2.cvtColor(cvimg, cv2.COLOR_BGR2GRAY)才能转换成单通道灰度图。而用PIL读取图片就已经是单通道灰度图了。
有网页反馈说使用
cv2.imread(imgpath, cv2.IMREAD_GRAYSCALE)
就能转成灰度图,但是最近我做实验发现,这种方式得到的灰度图跟直接使用pillow库读取得到的灰度图还是有差别的。以语义分割pascal voc数据集为例,众所周知,pascal voc语义分割数据集有20类,再加上背景类。在标注文件.png图片的像素值有[0,1,2,3, ...., 20]的取值分布,此外还有255.接下来做一个实验,代码如下:
from PIL import Image
import cv2
import numpy as np
if __name__=='__main__':
imgpath = '2010_004361.png'
label = cv2.imread(imgpath, cv2.IMREAD_GRAYSCALE)
label2 = cv2.imread(imgpath)
label3 = np.array(Image.open(imgpath))
print(np.unique(label))
print(np.unique(label2))
print(np.unique(label3))
print(label.shape)
print(label2.shape)
print(label3.shape)
运行这个程序之后,结果如下:
可以看到第一种方法 cv2.imread(imgpath, cv2.IMREAD_GRAYSCALE)
得到的像素矩阵虽然是单通道的,但是它的像素值有的不在[0,20]区间之内。
第三种方法 np.array(Image.open(imgpath))
得到的像素矩阵是单通道的,并且它的像素值在[0,20]区间之内。
这个在语义分割训练的时候要特别小心的,因为语义分割是像素级分类,标注文件里的每个像素点表示类别的序列号,而序列号的取值要在0到num_class之内的,num_class表示类别数量。