树形DP—树的直径

树的直径
通俗的讲就是求树上的最长链的长度
一般有两种求法,各有优势


DP法

我们假设树的根是rt
那么树的直径显然会有两种情况
1.直径的两个端点分别在rt的两个子树内
2.直径在rt的某个子树内

这里就可以用到分治的思想,先以rt为根处理情况1,再递归rt的子树将情况2转变为情况1处理

d p [ u ] dp[u] dp[u]表示从结点u出发向u的子树走能走到的最远距离
v i v_i vi为u的子节点
那么有 d p [ u ] = m a x ( d p [ v i ] + d i s ( u , v ) ) dp[u]=max(dp[v_i]+dis(u,v)) dp[u]=max(dp[vi]+dis(u,v))

对于以u为根的子树内,经过结点u的最长链长度 m x l e n [ u ] mxlen[u] mxlen[u]
m x l e n [ u ] = m a x ( d p [ v i ] + d p [ v j ] + d i s ( v i , u ) + d i s ( u , v j ) ) mxlen[u]=max(dp[v_i]+dp[v_j]+dis(v_i,u)+dis(u,v_j)) mxlen[u]=max(dp[vi]+dp[vj]+dis(vi,u)+dis(u,vj))

由于dfs的特性,这里我们并不需要 O ( n 2 ) O(n^2) O(n2)的枚举
假设当前搜到的 u u u的子节点为 v i v_i vi
那么显然 d p [ u ] dp[u] dp[u]已经被 d p [ v 1 ] dp[v_1] dp[v1]~ d p [ v i − 1 ] dp[v_{i-1}] dp[vi1]中最大的一个更新过
所以这里可以直接用已有的 d p [ u ] dp[u] dp[u]代替另一个子节点的枚举

最后整个树的最长链就是 m a x ( m x l e n [ u ] ) 1 < = u < = n max(mxlen[u])1<=u<=n max(mxlen[u])1<=u<=n

整个算法只需一次dfs,时间复杂度 O ( n ) O(n) O(n)

void DP(int u,int pa)
{
    dp[u]=0;
    for(int i=head[u];i;i=E[i].nxt)
    {
        int v=E[i].v;
        if(v==pa) continue;
        DP(v,u);
        mxlen=max(mxlen,dp[u]+dp[v]+E[i].dis);//这里直接用一个全部变量更新也可以
        dp[u]=max(dp[u],dp[v]+E[i].dis);
    }
}

DFS || BFS 法

算法总共两次dfs或bfs

第一步
从任意节点出发,通过dfs或bfs遍历找到与出发点最远的结点,记为p

第二步
从p出发,通过dfs或bfs遍历找到离p最远的结点,记为q

此时p到q的路径就是树的直径

该算法整体复杂度也为 O ( n ) O(n) O(n),常数比DP法稍大
但是可以同时得知直径的具体结点,以便于其他操作

void dfs(int u,int pa)
{
    //dp[u]记录从u出发能到达的最远距离,rem[u]记录离u最远的结点
    rem[u]=u; dp[u]=0;
    for(int i=head[u];i;i=E[i].nxt)
    {
        int v=E[i].v;
        if(v==pa) continue;
        dfs(v,u);
        if(dp[u]<=dp[v]+E[i].dis)
        dp[u]=dp[v]+E[i].dis,rem[u]=rem[v];
    }
}

dfs1(1,0); p=rem[1];
dfs1(p,0); q=rem[p];

需要特别注意的是

当树中有负边权时不能使用该方法

模板题
POJ1985 Cow Marathon

#include<iostream>
#include<vector>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;

int read()
{
    int f=1,x=0;
    char ss=getchar();
    while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
    while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
    return f*x;
}

const int maxn=100010;
int n,m;
struct node{int v,dis,nxt;}E[maxn<<2];
int head[maxn],tot;
int dp[maxn],mxlen;

void add(int u,int v,int dis)
{
    E[++tot].nxt=head[u];
    E[tot].v=v; E[tot].dis=dis;
    head[u]=tot;
}

void DP(int u,int pa)
{
	dp[u]=0;
	for(int i=head[u];i;i=E[i].nxt)
	{
		int v=E[i].v;
		if(v==pa) continue;
		DP(v,u);
		mxlen=max(mxlen,dp[u]+dp[v]+E[i].dis);
		dp[u]=max(dp[u],dp[v]+E[i].dis);
	} 
}

int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
    	memset(head,0,sizeof(head)); 
		tot=mxlen=0;
		while(m--)  
        {  
            int u=read(),v=read(),dis=read();
            char ss[5]; scanf("%s",&ss);
            add(u,v,dis);  add(v,u,dis);  
        }  
		DP(1,0);
    	printf("%d",mxlen);
	}
    return 0;
}

  • 10
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
树形动态规划(Tree DP)是一种常用的动态规划算法,用于解决结构相关的问题。在Python中,可以使用递归或者迭代的方式实现树形DP树形DP的基本思想是,从的叶子节点开始,逐层向上计算每个节点的状态,并利用已经计算过的节点状态来更新当前节点的状态。这样可以通过自底向上的方式,逐步计算出整个的最优解。 下面是一个简单的示例,演示如何使用树形DP解决一个二叉中节点权值之和的最大值问题: ```python class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def max_sum(root): if root is None: return 0 # 递归计算左右子的最大权值和 left_sum = max_sum(root.left) right_sum = max_sum(root.right) # 当前节点的最大权值和为当前节点值加上左右子中较大的权值和 return root.val + max(left_sum, right_sum) # 构建一个二叉 root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(3) root.left.left = TreeNode(4) root.left.right = TreeNode(5) # 计算二叉中节点权值之和的最大值 result = max_sum(root) print(result) ``` 这段代码中,我们定义了一个`TreeNode`类来表示二叉的节点,其中`val`表示节点的权值,`left`和`right`分别表示左子节点和右子节点。`max_sum`函数使用递归的方式计算二叉中节点权值之和的最大值,通过比较左右子的最大权值和来确定当前节点的最大权值和。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值