洛谷P3199 [HNOI2009]最小圈【0/1分数规划】

Time Limit: 10 Sec
Memory Limit: 64 MB

Description

考虑带权的有向图 G = ( V , E ) G=(V,E) G=(V,E)以及 w : E → R w:E\rightarrow R w:ER,每条边 e = ( i , j ) ( i ≠ j , i ∈ V , j ∈ V ) e=(i,j)(i\neq j,i\in V,j\in V) e=(i,j)(i=j,iV,jV)的权值定义为 w i , j w_{i,j} wi,j,令 n = ∣ V ∣ n=|V| n=V c = ( c 1 , c 2 , ⋯   , c k ) ( c i ∈ V ) c=(c_1,c_2,\cdots,c_k)(c_i\in V) c=(c1,c2,,ck)(ciV) G G G中的一个圈当且仅当 ( c i , c i + 1 ) ( 1 ≤ k ) (c_i,c_{i+1})(1\le k) (ci,ci+1)(1k) ( c k , c 1 ) (c_k,c_1) (ck,c1)都在 E E E中,这时称 k k k为圈 c c c的长度同时令 c k + 1 = c 1 c_{k+1}=c_1 ck+1=c1,并定义圈 c = ( c 1 , c 2 , ⋯   , c k ) c=(c_1,c_2,\cdots,c_k) c=(c1,c2,,ck)的平均值为 μ ( c ) = ∑ i = 1 k w c i , c i + 1 / k \mu(c)=\sum\limits_{i=1}^{k} w_{c_i,c_{i+1}}/k μ(c)=i=1kwci,ci+1/k,即 c c c上所有边的权值的平均值。令 μ ′ ( c ) = M i n ( μ ( c ) ) \mu'(c)=Min(\mu(c)) μ(c)=Min(μ(c)) G G G中所有圈 c c c的平均值的最小值。现在的目标是:在给定了一个图 G = ( V , E ) G=(V,E) G=(V,E)以及 w : E → R w:E\rightarrow R w:ER之后,请求出 G G G中所有圈 c c c的平均值的最小值 μ ′ ( c ) = M i n ( μ ( c ) ) \mu'(c)=Min(\mu(c)) μ(c)=Min(μ(c))


题目分析

题目说的通俗点就是
在图中找一个环,使得环上边权之和除以节点个数最小,求这个最小平均值

也算比较裸的0/1分数规划了,和POJ - 3621 Sightseeing Cows有点像

为方便描述,记环 S = ( { v i } , { e i } ) S=(\{v_i\},\{e_i\}) S=({vi},{ei})
其中 { v i } \{v_i\} {vi}为环上结点的集合, { e i } \{e_i\} {ei}为环上的边的集合
记每条边边权为 a [ e i ] a[e_i] a[ei],每个节点点权 b [ v i ] b[v_i] b[vi]
并令所有点权为1

这样我们就得到了一个0/1分数规划模型
二分一个mid然后判定图上是否存在一个环S
使得 ∑ i = 1 t a [ e i ] ∑ i = 1 t b [ v i ] < m i d \frac{\sum_{i=1}^ta[e_i]}{\sum_{i=1}^tb[v_i]}<mid i=1tb[vi]i=1ta[ei]<mid
即该环是否满足 ∑ i = 1 t ( a [ e i ] − m i d ∗ b [ v i ] ) < 0 \sum_{i=1}^t(a[e_i]-mid*b[v_i])<0 i=1t(a[ei]midb[vi])<0
因为 b [ v i ] = 1 b[v_i]=1 b[vi]=1,所以再化简得 ∑ i = 1 t ( a [ e i ] − m i d ) < 0 \sum_{i=1}^t(a[e_i]-mid)<0 i=1t(a[ei]mid)<0

这样我们就把问题转化成了判定图中是否存在负环

我们把每条边得边权看作 a [ e i ] − m i d a[e_i]-mid a[ei]mid
然后在图上判负环,若有负环则 R = m i d R=mid R=mid,否则 L = m i d L=mid L=mid
直到达到精度要求


#include<iostream>
#include<map>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
typedef double dd;
 
int read()
{
    int f=1,x=0;
    char ss=getchar();
    while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
    while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
    return f*x;
}
 
const int maxn=3010;
int n,m;
int a[maxn];
struct node{int v,nxt; dd dis;}E[20010];
int head[maxn],tot;
int vis[maxn],judge;
dd d[maxn]; 
 
void add(int u,int v,dd dis)
{
    E[++tot].nxt=head[u];
    E[tot].v=v; E[tot].dis=dis;
    head[u]=tot;
}
 
void check(int u,dd x)
{
    vis[u]=1;
    for(int i=head[u];i;i=E[i].nxt)
    {
        int v=E[i].v; dd dis=E[i].dis;
        if(d[v]>d[u]+dis-x)//边权a[e_i]-mid
        {
            if(vis[v]||judge){judge=1;break;}
            d[v]=d[u]+dis-x;
            check(v,x);
        }
    }
    vis[u]=0;
}
 
int main()
{
    n=read();m=read();
    for(int i=1;i<=m;++i)
    {
        int u=read(),v=read();
        dd dis; scanf("%lf",&dis);
        add(u,v,dis);
    }
    dd L=-1e6,R=1e6,mid;
    while(R-L>1e-10)
    {
        mid=(L+R)/2;
        memset(d,0,sizeof(d)); judge=0;
        memset(vis,0,sizeof(vis));
        for(int i=1;i<=n;++i)
        {
            check(i,mid);
            if(judge) break;
        }
        if(judge)R=mid;
        else L=mid;
    }
    printf("%.8lf",L);
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值