洛谷3199 [HNOI2009]最小圈

76 篇文章 0 订阅
58 篇文章 0 订阅

标签:分数规划,二分,SPFA

题目

题目传送门

题目描述

考虑带权的有向图 G = ( V , E ) G=(V,E) G=(V,E)以及 w : E → R w:E\rightarrow R w:ER,每条边 e = ( i , j ) ( i ≠ j , i ∈ V , j ∈ V ) e=(i,j)(i\neq j,i\in V,j\in V) e=(i,j)(i̸=j,iV,jV)的权值定义为 w i , j w_{i,j} wi,j,令 n = ∣ V ∣ n=|V| n=V c = ( c 1 , c 2 , ⋯ &ThinSpace; , c k ) ( c i ∈ V ) c=(c_1,c_2,\cdots,c_k)(c_i\in V) c=(c1,c2,,ck)(ciV) G G G中的一个圈当且仅当 ( c i , c i + 1 ) ( 1 ≤ i &lt; k ) (c_i,c_{i+1})(1\le i&lt;k) (ci,ci+1)(1i<k) ( c k , c 1 ) (c_k,c_1) (ck,c1)都在 E E E中,这时称 k k k为圈 c c c的长度同时令 c k + 1 = c 1 c_{k+1}=c_1 ck+1=c1,并定义圈 c = ( c 1 , c 2 , ⋯ &ThinSpace; , c k ) c=(c_1,c_2,\cdots,c_k) c=(c1,c2,,ck)的平均值为 μ ( c ) = ∑ i = 1 k w c i , c i + 1 / k \mu(c)=\sum\limits_{i=1}^{k} w_{c_i,c_{i+1}}/k μ(c)=i=1kwci,ci+1/k,即 c c c上所有边的权值的平均值。令 μ ′ ( c ) = M i n ( μ ( c ) ) \mu&#x27;(c)=Min(\mu(c)) μ(c)=Min(μ(c)) G G G中所有圈 c c c的平均值的最小值。现在的目标是:在给定了一个图 G = ( V , E ) G=(V,E) G=(V,E)以及 w : E → R w:E\rightarrow R w:ER之后,请求出 G G G中所有圈 c c c的平均值的最小值 μ ′ ( c ) = M i n ( μ ( c ) ) \mu&#x27;(c)=Min(\mu(c)) μ(c)=Min(μ(c))

输入输出格式

输入格式

第一行2个正整数,分别为 n n n m m m,并用一个空格隔开,只用 n = ∣ V ∣ , m = ∣ E ∣ n=|V|,m=|E| n=V,m=E分别表示图中有 n n n个点 m m m条边。
接下来m行,每行3个数 i , j , w i , j i,j,w_{i,j} i,j,wi,j,表示有一条边 ( i , j ) (i,j) (i,j)且该边的权值为 w i , j w_{i,j} wi,j。输入数据保证图 G = ( V , E ) G=(V,E) G=(V,E)连通,存在圈且有一个点能到达其他所有点。

输出格式

请输出一个实数 μ ′ ( c ) = M i n ( μ ( c ) ) \mu&#x27;(c)=Min(\mu(c)) μ(c)=Min(μ(c)),要求输出到小数点后8位。

输入输出样例

输入样例#1

4 5
1 2 5
2 3 5
3 1 5
2 4 3
4 1 3

输出样例#1

3.66666667

输入样例#2

2 2
1 2 -2.9
2 1 -3.1

输出样例#2

-3.00000000

说明

对于100%的数据, n ≤ 3000 , m ≤ 10000 , ∣ w i , j ∣ ≤ 1 0 7 n\le 3000,m\le 10000,|w_{i,j}| \le 10^7 n3000,m10000,wi,j107

分析

分数规划典型题了

我们令环为 S = { v [ i ] } , { e [ i ] } S=\{v[i]\},\{e[i]\} S={v[i]},{e[i]},v[i]为环上节点的集合,e[i]为环上边的集合,记每条边的边权为 e [ i ] . w e[i].w e[i].w,每个点的点权为 b [ i ] b[i] b[i],所有点权都为1

那么先二分答案,然后寻找是否存在一个环,满足下列式子

∑ i = 1 t e [ i ] . w ∑ i = 1 t b [ v i ] ≤ m i d \frac {\sum_{i=1}^t e[i].w} {\sum_{i=1}^t b[v_i]}\leq mid i=1tb[vi]i=1te[i].wmid

式子化简后

∑ i = 1 t ( e [ i ] . w − m i d ) &lt; 0 \sum_{i=1}^t (e[i].w-mid) &lt; 0 i=1t(e[i].wmid)<0

那么问题就转化为了判断图中是否存在负环

我们可以把每条边的边权看成 e [ i ] . w − m i d e[i].w-mid e[i].wmid,之后用SPFA判负环

code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define dep(i,a,b) for(int i=a;i>=b;i--)
#define ll long long
#define mem(x,num) memset(x,num,sizeof x)
#define reg(x) for(int i=last[x];i;i=e[i].next)
using namespace std;
inline ll read(){
	ll f=1,x=0;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}
//******head by yjjr******
#define inf 1e6
const int maxn=1e4+6;
int n,m,cnt=0,last[maxn],u[maxn],v[maxn],judge;
double w,dis[maxn];bool vis[maxn];
struct edge{int to,next;double v;}e[maxn];
void insert(int u,int v,double w){
	e[++cnt]=(edge){v,last[u],w};last[u]=cnt;
}
void spfa(int x,double w){
	vis[x]=1;
	reg(x)
		if(dis[x]+e[i].v-w<dis[e[i].to]){
			if(judge||vis[e[i].to]){judge=1;break;}
			dis[e[i].to]=dis[x]+e[i].v-w;
			spfa(e[i].to,w);
		}
	vis[x]=0;
}
int main(){
	n=read(),m=read();
	rep(i,1,m){int u=read(),v=read();scanf("%lf",&w);insert(u,v,w);}
	double l=-inf,r=inf;
	int T=66;
	while(T--){
		double mid=(l+r)/2;
		mem(vis,0);mem(dis,0);judge=0;
		rep(i,1,n){
			spfa(i,mid);
			if(judge)break;
		}
		if(judge)r=mid;else l=mid;
	}
	printf("%.8lf\n",l);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值