Lucas定理&&扩展Lucas

Lucas定理

求解 C n m m o d    p C_n^m\mod p Cnmmodp (p为素数)

蒟蒻不会证明,记着递推公式就好=_=
L u c a s ( n , m ) = C ( n , m )   m o d   p Lucas(n,m)=C(n,m)\bmod p Lucas(n,m)=C(n,m)modp = C ( n   m o d   p =C(n\bmod p =C(nmodp , m   m o d   p ,m\bmod p ,mmodp ) ∗ L u c a s ( n / p , m / p )   m o d   p )*Lucas(n/p,m/p)\bmod p )Lucas(n/p,m/p)modp
边界为 L u c a s ( i , 0 ) = 1 Lucas(i,0)=1 Lucas(i,0)=1

int C(int n,int m)
{
    int ans=1;
    for(int i=1;i<=m;++i)
    ans*=(n-m+i)*inv[i]%p;
    return ans;
} 

int lucas(int n,int m)
{
    if(m==0) return 1;
    else return C(n%p,m%p)*lucas(n/p,m/p)%p;
}

扩展Lucas

求解 C n m m o d &ThinSpace;&ThinSpace; p C_n^m\mod p Cnmmodp (p不一定为素数)
先导知识 中国剩余定理、扩欧、逆元、组合数、质因数分解

首先讲p分解质因数
p = p 1 k 1 + p 2 k 2 + . . . + p q k q p=p_1^{k_1}+p_2^{k_2}+...+p_q^{k_q} p=p1k1+p2k2+...+pqkq

于是可以列出同余方程组
{ a n s ≡ C n m m o d &ThinSpace;&ThinSpace; p 1 k 1 ( m o d &ThinSpace;&ThinSpace; p 1 k 1 ) a n s ≡ C n m m o d &ThinSpace;&ThinSpace; p 2 k 2 ( m o d &ThinSpace;&ThinSpace; p 2 k 2 ) . . . a n s ≡ C n m m o d &ThinSpace;&ThinSpace; p q k q ( m o d &ThinSpace;&ThinSpace; p q k q ) \left\{\begin{aligned} ans\equiv C_n^m\mod p_1^{k_1}(\mod p_1^{k_1})\\ ans\equiv C_n^m\mod p_2^{k_2}(\mod p_2^{k_2})\\ ...\\ ans\equiv C_n^m\mod p_q^{kq}(\mod p_q^{kq}) \end{aligned}\right. ansCnmmodp1k1(modp1k1)ansCnmmodp2k2(modp2k2)...ansCnmmodpqkq(modpqkq)

显然ans就是我们所要的答案
因为 p i k i p_i^{k_i} piki是分解质因数得到的,所以必定两两互质
只要用中国剩余定理合并就好

我们要讨论的是怎样求出 C n m m o d &ThinSpace;&ThinSpace; p i k i C_n^m\mod p_i^{k_i} Cnmmodpiki
直接考虑从定义式入手
C n m m o d &ThinSpace;&ThinSpace; p i k i = n ! m o d &ThinSpace;&ThinSpace; p i k i m ! m o d &ThinSpace;&ThinSpace; p i k i ∗ ( n − m ) ! m o d &ThinSpace;&ThinSpace; p i k i C_n^m\mod p_i^{k_i}=\frac{n!\mod p_i^{k_i}}{m!\mod p_i^{k_i}*(n-m)!\mod p_i^{k_i}} Cnmmodpiki=m!modpiki(nm)!modpikin!modpiki

直接看例子会比较容易理解,看这个例子 n = 19 , p i = 3 , k i = 2 n=19,pi=3,ki=2 n=19,pi=3,ki=2

先试着把 n ! n! n!所有 p i p_i pi的倍数分离出来
3 ∗ 6 ∗ 9 ∗ 12 ∗ 15 ∗ 18 3*6*9*12*15*18 369121518
再把这里面的 p i p_i pi全部提出来
3 6 ∗ ( 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 ∗ 6 ) = 3 6 ∗ 6 ! 3^6*(1*2*3*4*5*6)=3^6*6! 36(123456)=366!

形式化的描述这部分就是 p i ⌊ n / p i ⌋ ∗ ⌊ n / p i ⌋ ! p_i^{\lfloor n/p_i \rfloor}*\lfloor n/p_i \rfloor! pin/pin/pi!
p i p_i pi得幂次方部分可以直接快速幂,阶乘部分可以继续递归

处理完上面来看剩下一部分
1 ∗ 2 ∗ 4 ∗ 5 ∗ 7 ∗ 8 ∗ 10 ∗ 11 ∗ 13 ∗ 14 ∗ 16 ∗ 17 ∗ 19 1*2*4*5*7*8*10*11*13*14*16*17*19 12457810111314161719
仔细观察可以发现这一串在 p i k i pi^{ki} piki意义下是有周期的
( 1 ∗ 2 ∗ 4 ∗ 5 ∗ 7 ∗ 8 ) ≡ ( 10 ∗ 11 ∗ 13 ∗ 14 ∗ 16 ∗ 17 ) ( m o d &ThinSpace;&ThinSpace; p i k i ) (1*2*4*5*7*8)\equiv(10*11*13*14*16*17)(\mod pi^{ki}) (124578)(101113141617)(modpiki)
每一个循环节长度为 p i k i pi^{ki} piki
只要求出第一个循环节,然后在快速幂 ⌊ n / p i k i ⌋ \lfloor n/pi^{k_i} \rfloor n/piki次方就可以了

最后发现还剩下一个19
也就是说我们算完上面两部分还有剩余 n − ⌊ n / p i k i ⌋ ∗ p i k i n-\lfloor n/pi^{k_i} \rfloor*pi^{k_i} nn/pikipiki个数字
不过这些数字长度显然不超过 p i k i pi^{ki} piki,直接暴力就好

最后再次总结一下分解的几部分

1.一个幂次方以及一个阶乘, p i ⌊ n / p i ⌋ ∗ ⌊ n / p i ⌋ ! p_i^{\lfloor n/p_i \rfloor}*\lfloor n/p_i \rfloor! pin/pin/pi!
2.一个循环节的 ⌊ n / p k ⌋ \lfloor n/p_k \rfloor n/pk次方
3.剩下的 n − ⌊ n / p i k i ⌋ ∗ p i k i n-\lfloor n/pi^{k_i} \rfloor*pi^{k_i} nn/pikipiki个数字暴力乘
洛谷P4720 【模板】扩展卢卡斯
#include<iostream>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long lt;

lt read()
{
    lt f=1,x=0;
    char ss=getchar();
    while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
    while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
    return f*x;
}

const int maxn=50001;
lt a[maxn],b[maxn],cnt;

lt qpow(lt ai,lt k,lt mod)
{
    lt mul=1;
    while(k>0)
    {
        if(k&1)mul=(mul*ai)%mod;
        ai=(ai*ai)%mod;
        k>>=1;
    }
    return mul;
}

lt fac(lt n,lt pi,lt pk)
{
    if(!n) return 1;
    lt mul=1;
    
    for(lt i=2;i<=pk;++i)//分解阶乘第二部分,循环节
    if(i%pi)mul=(mul*i)%pk;
    mul=qpow(mul,n/pk,pk);
    
    for(lt i=2;i<=n%pk;++i)//分解阶乘第三部分,求剩余数字
    if(i%pi)mul=(mul*i)%pk;
    
    return mul*fac(n/pi,pi,pk)%pk;//分解阶乘第一部分的另一个阶乘递归
}

void exgcd(lt a,lt b,lt &x,lt &y)
{
    if(b==0){ x=1; y=0; return;}
    exgcd(b,a%b,x,y);
    lt tp=x;
    x=y; y=tp-a/b*y;
}

lt inv(lt a,lt b)
{
    lt x,y;
    exgcd(a,b,x,y);
    return (x%b+b)%b;
}

lt C(lt n,lt m,lt pi,lt pk)
{
    lt facn=fac(n,pi,pk);//分别求n,m,n-m膜pi^ki的阶乘
    lt facm=fac(m,pi,pk);
    lt facnm=fac(n-m,pi,pk);
    
    lt kk=0;
    for(lt i=n;i;i/=pi)kk+=i/pi;//上述分解阶乘第一部分的pi幂次方
    for(lt i=m;i;i/=pi)kk-=i/pi;
    for(lt i=n-m;i;i/=pi)kk-=i/pi;
    
    return facn*inv(facm,pk)%pk*inv(facnm,pk)%pk*qpow(pi,kk,pk)%pk;//注意求逆元
}

void div(lt n,lt m,lt x)
{
    for(lt i=2;i<=sqrt(x);++i)
    {
        if(x%i==0)
        {
            lt pi=i,ki=0;
            while(x%i==0)x/=i,ki++;
            b[++cnt]=qpow(pi,ki,1e7);
            a[cnt]=C(n,m,pi,b[cnt]);//C(n,m)%pi^ki
        }
    }
    if(x>1)b[++cnt]=x,a[cnt]=C(n,m,x,b[cnt]);
}

lt china()
{
    lt ans=0,M=1,x,y;
    for(int i=1;i<=cnt;++i) M*=b[i];
    for(int i=1;i<=cnt;++i)
    {
        lt tp=M/b[i];
        exgcd(tp,b[i],x,y);
        x=(x%b[i]+b[i])%b[i];
        ans=(ans+tp*x*a[i])%M;
    }
    return (ans+M)%M;
}

int main()
{
    lt n=read(),m=read(),p=read();
    div(n,m,p);
    printf("%lld",china());
    return 0;
}
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值