Time Limit: 10 Sec
Memory Limit: 512 MB
Description
栋栋最近迷上了随机算法,而随机数是生成随机算法的基础。栋栋准备使用线性同余法(Linear Congruential Me
thod)来生成一个随机数列,这种方法需要设置四个非负整数参数m,a,c,X[0],按照下面的公式生成出一系列随机
数X[n]X[n+1]=(aX[n]+c)mod m其中mod m表示前面的数除以m的余数。从这个式子可以看出,这个序列的下一个数
总是由上一个数生成的。用这种方法生成的序列具有随机序列的性质,因此这种方法被广泛地使用,包括常用的C+
+和Pascal的产生随机数的库函数使用的也是这种方法。栋栋知道这样产生的序列具有良好的随机性,不过心急的
他仍然想尽快知道X[n]是多少。由于栋栋需要的随机数是0,1,…,g-1之间的,他需要将X[n]除以g取余得到他想要
的数,即X[n] mod g,你只需要告诉栋栋他想要的数X[n] mod g是多少就可以了。
Input
6个用空格分割的整数m,a,c,X[0],n和g,其中a,c,X[0]是非负整数,m,n,g是正整数。
g<=10^8
对于所有数据,n>=1,m>=1,a>=0,c>=0,X[0]>=0,g>=1。
Output
输出一个数,即X[n] mod g
曾经的NOI竟然也考过裸矩乘啊,连个矩阵DP都不是
也是蒟蒻唯一一次能一A NOI的题吧
[ X [ n − 1 ] c ] × [ a 0 1 1 ] = [ X [ n ] c ] \begin{bmatrix} X[n-1] \quad c \end{bmatrix} \times \begin{bmatrix} a & 0 \\ 1 & 1 \end{bmatrix}=\begin{bmatrix} X[n] \quad c \end{bmatrix} [X[n−1]c]×[a101]=[X[n]c]
#include<iostream>
#include<vector>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long lt;
lt read()
{
lt f=1,x=0;
char ss=getchar();
while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
return x*f;
}
lt n;
lt a,c,x0,p,g;
lt qmul(lt tt,lt k)
{
lt ans=0;
while(k){
if(k&1) ans=(ans+tt)%p;
tt=(tt+tt)%p; k>>=1;
}
return ans;
}
struct matrix
{
lt mat[10][10],row,col;
matrix(int r=0,int c=0){
row=r; col=c;
for(int i=1;i<=row;++i)
for(int j=1;j<=col;++j)
mat[i][j]=0;
}
};
matrix operator *(matrix a,matrix b){
matrix c=matrix(a.row,b.col);
for(int i=1;i<=a.row;++i)
for(int j=1;j<=b.col;++j)
for(int k=1;k<=a.col;++k)
{
c.mat[i][j]+=qmul(a.mat[i][k],b.mat[k][j])%p;
c.mat[i][j]%=p;
}
return c;
}
matrix qpow(matrix a,lt k)
{
matrix res=matrix(a.row,a.col);
for(int i=1;i<=a.row;++i) res.mat[i][i]=1;
while(k){
if(k&1) res=res*a;
a=a*a; k>>=1;
}
return res;
}
int main()
{
p=read();a=read();c=read();
x0=read();n=read();g=read();
matrix f=matrix(1,2),h=matrix(2,2);
f.mat[1][1]=x0; f.mat[1][2]=c;
h.mat[1][1]=a; h.mat[1][2]=0;
h.mat[2][1]=1; h.mat[2][2]=1;
matrix res=f*qpow(h,n);
printf("%lld",res.mat[1][1]%g);
return 0;
}