Time Limit: 5 Sec
Memory Limit: 64 MB
Description
潘塔纳尔沼泽地号称世界上最大的一块湿地,它地位于巴西中部马托格罗索州的南部地区。每当雨季来临,这里碧波荡漾、生机盎然,引来不少游客。为了让游玩更有情趣,人们在池塘的中央建设了几座石墩和石桥,每座石桥连接着两座石墩,且每两座石墩之间至多只有一座石桥。这个景点造好之后一直没敢对外开放,原因是池塘里有不少危险的食人鱼。豆豆先生酷爱冒险,他一听说这个消息,立马赶到了池塘,想做第一个在桥上旅游的人。虽说豆豆爱冒险,但也不敢拿自己的性命开玩笑,于是他开始了仔细的实地勘察,并得到了一些惊人的结论:食人鱼的行进路线有周期性,这个周期只可能是2,3或者4个单位时间。每个单位时间里,食人鱼可以从一个石墩游到另一个石墩。每到一个石墩,如果上面有人它就会实施攻击,否则继续它的周期运动。如果没有到石墩,它是不会攻击人的。借助先进的仪器,豆豆很快就摸清了所有食人鱼的运动规律,他要开始设计自己的行动路线了。每个单位时间里,他只可以沿着石桥从一个石墩走到另一个石墩,而不可以停在某座石墩上不动,因为站着不动还会有其它危险。如果豆豆和某条食人鱼在同一时刻到达了某座石墩,就会遭到食人鱼的袭击,他当然不希望发生这样的事情。现在豆豆已经选好了两座石墩Start和End,他想从Start出发,经过K个单位时间后恰好站在石墩End上。假设石墩可以重复经过(包括Start和End),他想请你帮忙算算,这样的路线共有多少种(当然不能遭到食人鱼的攻击)。
Input
输入文件共M + 2 + NFish行。第一行包含五个正整数N,M,Start,End和K,分别表示石墩数目、石桥数目、Start石墩和End石墩的编号和一条路线所需的单位时间。石墩用0到N–1的整数编号。第2到M + 1行,给出石桥的相关信息。每行两个整数x和y,0 ≤ x, y ≤ N–1,表示这座石桥连接着编号为x和y的两座石墩。第M + 2行是一个整数NFish,表示食人鱼的数目。第M + 3到M + 2 + NFish行,每行给出一条食人鱼的相关信息。每行的第一个整数是T,T = 2,3或4,表示食人鱼的运动周期。接下来有T个数,表示一个周期内食人鱼的行进路线。 如果T=2,接下来有2个数P0和P1,食人鱼从P0到P1,从P1到P0,……; 如果T=3,接下来有3个数P0,P1和P2,食人鱼从P0到P1,从P1到P2,从P2到P0,……; 如果T=4,接下来有4个数P0,P1,P2和P3,食人鱼从P0到P1,从P1到P2,从P2到P3,从P3到P0,……。豆豆出发的时候所有食人鱼都在自己路线上的P0位置,请放心,这个位置不会是Start石墩。
Output
输出路线的种数,因为这个数可能很大,你只要输出该数除以10000的余数就行了。
【约定】 1 ≤ N ≤ 50,1 ≤ K ≤ 2,000,000,000,1 ≤ NFish ≤ 20
题目分析
图的邻接矩阵有一个性质
若
G
[
u
]
[
v
]
G[u][v]
G[u][v]表示
u
u
u到
v
v
v恰好经过一条边的路径的条数
那么
G
k
[
u
]
[
v
]
G^k[u][v]
Gk[u][v]则表示恰好经过
K
K
K条边的
可以用矩阵快速幂计算
该性质在这篇博客里由较具体的证明
矩阵乘法 x 图的邻接矩阵
此题中每个时刻的矩阵是变化的,不能直接快速幂
若我们以
G
i
G_i
Gi矩阵表示
i
i
i时刻去掉不能呆的点后的图
那么答案矩阵为
∏
i
=
1
K
G
i
\prod_{i=1}^KG_i
∏i=1KGi
我们发现
T
=
2
,
3
,
4
T=2,3,4
T=2,3,4,他们的最小公倍数只有12
也就是说
G
i
G_i
Gi矩阵是以12为周期轮回的,即
G
i
=
G
i
+
12
G_i=G_{i+12}
Gi=Gi+12
于是我们可以把答案矩阵表示为
∏
i
=
1
K
G
i
=
(
∏
i
=
1
12
G
i
)
⌊
K
12
⌋
∗
∏
i
=
1
K
m
o
d
12
G
i
\prod_{i=1}^KG_i=(\prod_{i=1}^{12}G_i)^{\lfloor \frac{K}{12}\rfloor}*\prod_{i=1}^{K\mod 12}G_i
∏i=1KGi=(∏i=112Gi)⌊12K⌋∗∏i=1Kmod12Gi
我们只要预处理出
(
∏
i
=
1
12
G
i
)
⌊
K
12
⌋
(\prod_{i=1}^{12}G_i)^{\lfloor \frac{K}{12}\rfloor}
(∏i=112Gi)⌊12K⌋,然后快速幂
对于最后剩下的几个暴力计算即可
因为矩阵不满足交换律
所以注意预处理
(
∏
i
=
1
12
G
i
)
⌊
K
12
⌋
(\prod_{i=1}^{12}G_i)^{\lfloor \frac{K}{12}\rfloor}
(∏i=112Gi)⌊12K⌋实际操作应为
(
∏
i
=
2
12
G
i
)
⌊
K
12
⌋
∗
G
1
(\prod_{i=2}^{12}G_i)^{\lfloor \frac{K}{12}\rfloor}*G_1
(∏i=212Gi)⌊12K⌋∗G1
#include<iostream>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
int read()
{
int f=1,x=0;
char ss=getchar();
while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
return f*x;
}
const int mod=10000;
const int maxn=55;
int n,m,s,t,K;
int fish[5],judge[15][maxn];
struct matrix
{
int mat[maxn][maxn],row,col;
matrix(int r=0,int c=0){
row=r; col=c;
for(int i=1;i<=row;++i)
for(int j=1;j<=col;++j)
mat[i][j]=0;
}
}E[15];
matrix operator *(matrix a,matrix b){
matrix c=matrix(a.row,b.col);
for(int i=1;i<=a.row;++i)
for(int j=1;j<=b.col;++j)
for(int k=1;k<=a.col;++k)
{
c.mat[i][j]+=a.mat[i][k]*b.mat[k][j]%mod;
c.mat[i][j]%=mod;
}
return c;
}
matrix qpow(matrix a,int k)
{
matrix res=matrix(a.row,a.col);
for(int i=1;i<=a.row;++i) res.mat[i][i]=1;
while(k){
if(k&1) res=res*a;
a=a*a; k>>=1;
}
return res;
}
int main()
{
n=read();m=read();
s=read()+1;t=read()+1;K=read();
matrix G=matrix(n,n);
while(m--)
{
int u=read()+1,v=read()+1;
G.mat[u][v]=G.mat[v][u]=1;
}
int NF=read();
while(NF--)
{
int T=read();
for(int i=0;i<T;++i) fish[i]=read()+1;
for(int i=0;i<12;++i) judge[i][fish[i%T]]=1;
}
for(int i=0;i<12;++i)
{
E[i].row=E[i].col=n;
memcpy(E[i].mat,G.mat,sizeof(G.mat));
for(int u=1;u<=n;++u)
if(judge[i][u])
for(int v=1;v<=n;++v)
E[i].mat[v][u]=0;
}
matrix Q=matrix(n,n);
for(int i=1;i<=n;++i) Q.mat[i][i]=1;
for(int i=1;i<12;++i) Q=Q*E[i];
Q=Q*E[0];
matrix ans=qpow(Q,K/12);
for(int i=1;i<=K%12;++i)
ans=ans*E[i];
printf("%d",ans.mat[s][t]);/**/
return 0;
}