Time Limit: 10 Sec
Memory Limit: 512 MB
Description
人们选择手机号码时都希望号码好记、吉利。比如号码中含有几位相邻的相同数字、不含谐音不
吉利的数字等。手机运营商在发行新号码时也会考虑这些因素,从号段中选取含有某些特征的号
码单独出售。为了便于前期规划,运营商希望开发一个工具来自动统计号段中满足特征的号码数
量。
工具需要检测的号码特征有两个:号码中要出现至少3个相邻的相同数字,号码中不能同
时出现8和4。号码必须同时包含两个特征才满足条件。满足条件的号码例如:13000988721、
23333333333、14444101000。而不满足条件的号码例如:1015400080、10010012022。
手机号码一定是11位数,前不含前导的0。工具接收两个数L和R,自动统计出[L,R]区间
内所有满足条件的号码数量。L和R也是11位的手机号码。
Input
输入文件内容只有一行,为空格分隔的2个正整数L,R。
10^10 < = L < = R < 10^11
Output
输出文件内容只有一行,为1个整数,表示满足条件的手机号数量。
题目分析
数位DP真的都是一个套路
d
p
[
i
]
[
s
t
]
[
j
]
[
k
]
[
l
]
dp[i][st][j][k][l]
dp[i][st][j][k][l]表示当前处理到第
i
i
i位,上一位数码是
d
d
d,
k
,
l
k,l
k,l分别表示是否已出现4,8,
s
t
=
=
1
st==1
st==1表示还没出现三个数连续,
s
t
=
=
2
st==2
st==2表示上上位与上一位是连续的(两位连续),
s
t
=
=
3
st==3
st==3表示已出现过连续三位
特别注意此题中数字必须11位且不含前导0,即第11位不能填0
lt DP(int len,int st,int d,int rem4,int rem8,int pre)
{
if(len==0) return st==3;
if(!pre&&dp[len][st][d][rem4][rem8]!=-1) return dp[len][st][d][rem4][rem8];
lt res=0,mx=pre?dig[len]:9;
for(int i=0;i<=mx;++i)
{
if(len>=11&&i==0) continue;//第11位不能填0
if((rem4&&i==8)||(rem8&&i==4)) continue;
int nxt=1;
if(st==3) nxt=3;
else if(st==1&&i==d) nxt=2;
else if(st==1&&i!=d) nxt=1;
else if(st==2&&i==d) nxt=3;
else if(st==2&&i!=d) nxt=1;
res+=DP(len-1,nxt,i,rem4||i==4,rem8||i==8,pre&&i==mx);
}
if(!pre) dp[len][st][d][rem4][rem8]=res;
return res;
}
lt solve(lt x)
{
int len=0;
while(x)
{
dig[++len]=x%10;
x/=10;
}
return DP(len,0,10,0,0,1);
}
完整代码
注意这题的数位DP有一个特殊的地方
我们是以
[
1
e
10
,
R
]
−
[
1
e
10
,
L
−
1
]
[1e10,R]-[1e10,L-1]
[1e10,R]−[1e10,L−1]处理
[
L
,
R
]
[L,R]
[L,R]的
所以遇到
L
=
=
1
e
10
L==1e10
L==1e10直接特判输出
s
o
l
v
e
(
R
)
solve(R)
solve(R)
#include<iostream>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long lt;
lt read()
{
lt f=1,x=0;
char ss=getchar();
while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
return f*x;
}
const int maxn=30;
lt A,B;
lt dig[maxn],dp[maxn][5][15][5][5];
lt DP(int len,int st,int d,int rem4,int rem8,int pre)
{
if(len==0) return st==3;
if(!pre&&dp[len][st][d][rem4][rem8]!=-1) return dp[len][st][d][rem4][rem8];
lt res=0,mx=pre?dig[len]:9;
for(int i=0;i<=mx;++i)
{
if(len>=11&&i==0) continue;
if((rem4&&i==8)||(rem8&&i==4)) continue;
int nxt=1;
if(st==3) nxt=3;
else if(st==1&&i==d) nxt=2;
else if(st==1&&i!=d) nxt=1;
else if(st==2&&i==d) nxt=3;
else if(st==2&&i!=d) nxt=1;
res+=DP(len-1,nxt,i,rem4||i==4,rem8||i==8,pre&&i==mx);
}
if(!pre) dp[len][st][d][rem4][rem8]=res;
return res;
}
lt solve(lt x)
{
int len=0;
while(x)
{
dig[++len]=x%10;
x/=10;
}
return DP(len,0,10,0,0,1);
}
int main()
{
A=read();B=read();
memset(dp,-1,sizeof(dp));
if(A==10000000000) printf("%lld",solve(B));//注意这里的特判
else printf("%lld",solve(B)-solve(A-1));
return 0;
}