Address
Solution
根据 Lucas 定理,当  k k k 是质数时:
  ( n m ) ≡ ∏ i ( n i m i ) (   m o d   k ) \binom nm\equiv\prod_{i}\binom{n_i}{m_i}(\bmod k) (mn)≡i∏(mini)(modk)
 其中  n i n_i ni 和  m i m_i mi 分别表示  n n n 和  m m m 在  k k k 进制意义下第  i i i 位的值。
 所以问题转化成有多少对  0 ≤ i ≤ n 0\le i\le n 0≤i≤n ,  0 ≤ j ≤ min  ( i , m ) 0\le j\le\min(i,m) 0≤j≤min(i,m) 满足  k k k 进制意义下存在一位  x x x 满足  i x < j x i_x<j_x ix<jx 。
 相当于用  ( n + 1 ) × ( n + 2 ) 2 − max  ( 0 , n − m ) × ( max  ( 0 , n − m ) + 1 ) 2 \frac{(n+1)\times(n+2)}2-\frac{\max(0,n-m)\times(\max(0,n-m)+1)}2 2(n+1)×(n+2

                  
                  
                  
                  
这篇博客探讨了一种将组合数问题转化为数位DP的方法,利用Lucas定理来解决当k为质数时的计算。通过转换问题,计算在k进制下存在至少一位满足特定条件的数对数量,最终采用数位DP进行求解,复杂度为O(Tk^2 log max(n, m))。"
84887979,8257688,深度解析:CNN特征可视化与DeconvNet应用,"['CNN', '深度学习', '特征提取', '计算机视觉', '可视化工具']
          
最低0.47元/天 解锁文章
                          
                      
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					162
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            