题目描述
距离苏拉威西只有一百公里了,车内的空气比窗外更加冰冷。四双眼睛紧盯着艾莉 芬面前的屏幕,那是控制行星发动机的关键程序:春节十二响。他需要将其部署到电力控制系统的一个芯片中。
“春节十二响”由 n 个子程序构成,第 i 个子程序所需的内存空间是 M_i 。这 nn 个子程序之间的调用关系构成了一棵以第 1 个子程序为根的树,其中第 i 个子程序在调用树上的父亲是第 f_i个子程序。
由于内存紧张,电力控制芯片上提供了一种内存分段机制。你可以将内存分为若干 个段 S 1 , S 2 , S k S_1,S_2,S_k S1,S2,Sk ,并将每个程序预先分配到一个固定的段。如果两个子程序没有直接或间接的调用关系,则他们可以被分配到同一个段中,反之则不能。换言之,当且仅当 a 和 b 在调用树上不是祖先—后代关系,a 和 b 可以被分配到同一个段中。
一个段的大小应当是所有分配到这个段的子程序所需内存大小的最大值,所有段 大小的和不能超过系统的内存大小。
现在艾莉芬想要知道,电力控制芯片至少要有多少内存,才能保证春节十二响的正 确运行。即:最少需要多大的内存,才能通过先将内存分成若干个段,再把每个子程序分配到一个段中,使得每个段中分配的所有子程序之间不存在祖先—后代关系。
输入格式:
第一行包含一个正整数 n 表示子程序的个数,其中 n ⩽ 2 × 1 0 5 n \leqslant 2 \times 10^5 n⩽2×105
第二行有 n 个用空格隔开的正整数 M 1 , M 2 , . . . , M n , M i M_1 , M_2 , ..., M_n,M_i M1,M2,...,Mn,Mi表示第 i 个子程序所需的内存空间。
第三行有 n - 1 个用空格隔开的正整数 f 1 , f 2 , . . . , f n f_1 , f_2 , ..., f_n f1,f2,...,fn ,满足 f i < i f_i < i fi<i,表示第 i 个子程序在调用树上的父亲是第 f_i个子程序。
输出格式:
仅一个整数,表示最小的内存需求
说明
注意:在第 10、11、12 号测试点中,1 号子程序不一定是链的一个端点。
其中 M 是所有子内存需求的最大值,即
max
{
M
i
}
\max\left\{M_i\right\}
max{Mi}
对于全部数据,
1
⩽
n
⩽
2
×
1
0
5
1 \leqslant n \leqslant2 \times 10^5
1⩽n⩽2×105 ,
1
⩽
M
⩽
1
0
9
1 \leqslant M \leqslant 10^9
1⩽M⩽109
题目分析
题目中链的部分给了很好的提示
对于链的情况,只需要将1两边的链分别排序,不难想到对应排名的程序分到一段(多出来的单独一段)这样的贪心
扩展开,对于"多叉链",即1结点下面有很多条链,同样每条链排序,对应排名的放在一段
再扩展到普通的树
显然每个叶子结点的父亲是符合这个"多叉链"的情况的
按上述方法处理了这个结点后形成的每一段,对于同父亲的节点的子树处理得到的每一段,显然可以相互合并
方法同样是对应排名的合并
如此从叶子一直合并到根,可以用堆的启发式合并维护这个过程
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
using namespace std;
typedef long long lt;
int read()
{
int x=0,f=1;
char ss=getchar();
while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
return f*x;
}
const int maxn=400010;
int n,m;
int val[maxn];
struct node{int v,nxt;}E[maxn<<1];
int head[maxn],tot;
int id[maxn],cnt,tp[maxn];
priority_queue<int> q[maxn];
void add(int u,int v)
{
E[++tot].nxt=head[u];
E[tot].v=v;
head[u]=tot;
}
void dfs(int u)
{
id[u]=++cnt;
for(int i=head[u];i;i=E[i].nxt)
{
int v=E[i].v; dfs(v);
if(q[id[u]].size()<q[id[v]].size()) swap(id[u],id[v]);
int sz=q[id[v]].size();
for(int j=1;j<=sz;++j)
{
tp[j]=max(q[id[u]].top(),q[id[v]].top());
q[id[u]].pop(); q[id[v]].pop();
}
for(int j=1;j<=sz;++j) q[id[u]].push(tp[j]);
}
q[id[u]].push(val[u]);
}
int main()
{
n=read();
for(int i=1;i<=n;++i) val[i]=read();
for(int i=2;i<=n;++i){ int f=read(); add(f,i);}
dfs(1); lt ans=0;
while(!q[id[1]].empty()) ans+=q[id[1]].top(),q[id[1]].pop();
printf("%lld",ans);
return 0;
}