已知长度为n的排列,经过k次冒泡(每次把最大的数交换到最后)后,得到的新序列为
a
i
a_i
ai.
v
i
=
∑
j
=
1
i
−
1
=
[
a
i
<
a
j
]
vi=\sum_{j=1}^{i−1}=[a_i<a_j]
vi=∑j=1i−1=[ai<aj]
现在已知
v
i
v_i
vi的某些地方的值,不知道的记
v
i
=
−
1
v_i=-1
vi=−1,
求合法原排列数。
考虑
v
i
v_i
vi和排列达成双射关系。
且1次冒泡会导致
v
i
v_i
vi序列整体左移,并减1(若为0则不减)。最后添1位0
也即是
for(int i=1;i<n;i++)
v[i]=min(v[i+1]-1,0);
v[n]=0;
因此
v
v
v序列对应的原排列数为
k
!
∗
(
∑
i
=
1
n
−
k
[
v
[
i
]
=
=
0
]
(
k
+
1
)
)
∗
(
∑
i
=
1
n
−
k
[
v
[
i
]
=
=
−
1
]
(
k
+
i
)
)
k! *(\sum_{i=1}^{n-k}{[v[i]==0] (k+1)})*(\sum_{i=1}^{n-k}{[v[i]==-1] (k+i)})
k!∗(∑i=1n−k[v[i]==0](k+1))∗(∑i=1n−k[v[i]==−1](k+i))
无解条件为
(
∀
i
≤
n
−
k
,
v
[
i
]
>
i
−
1
)
∨
(
∀
i
>
n
−
k
,
v
[
i
]
>
0
)
(\forall i \le n-k,v[i]>i-1)\lor(\forall i\gt n-k,v[i]>0)
(∀i≤n−k,v[i]>i−1)∨(∀i>n−k,v[i]>0)
#include<bits/stdc++.h>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F ( 998244353)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int>
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
For(j,m-1) cout<<a[i][j]<<' ';\
cout<<a[i][m]<<endl; \
}
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
int n,m;
int v[1123456];
#define MAXN (1123456)
ll inj[MAXN],jie[MAXN];
inline int C(int a,int b) {
return (ll)jie[a]*inj[b]%F*inj[a-b]%F;
}inline int P(int a,int b) {
return (ll)jie[a]*inj[a-b]%F;
}
ll p=F;
inline int pow2(int a,ll b) //a^b mod p
{
if (b==0) return 1%p;
int c=pow2(a,b/2);
c=(ll)c*c%p;
if (b&1) c=(ll)c*a%p;
return c;
}
void pre(int n) {
jie[0]=1;For(i,n) jie[i]=mul(jie[i-1],i);
inj[0]=inj[1]=1;Fork(i,2,n) inj[i]=(F-(F/i))*inj[F%i]%F;
For(i,n) inj[i]=mul(inj[i],inj[i-1]);
}
ll a[1123456];
ll calc() {
int n=read(),k=read();
For(i,n) v[i]=read();
Fork(i,n-k+1,n) if(v[i]>0) return 0;
For(i,n-k) if(v[i]>i-1) return 0;
ll p=jie[k];
For(i,n-k) if(v[i]==0) p=p*(k+1)%F;
else if(v[i]==-1) p=p*(i+k)%F;
return p;
}
int main()
{
// freopen("D.in","r",stdin);
// freopen(".out","w",stdout);
pre(1e6);
int T=read();
while(T--) {
cout<<calc()<<endl;
}
return 0;
}