BZOJ 1057([ZJOI2007]棋盘制作-悬线法)

1057: [ZJOI2007]棋盘制作

Time Limit: 20 Sec   Memory Limit: 162 MB
Submit: 1021   Solved: 499
[ Submit][ Status]

Description

国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。小Q找到了一张由N*M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?

Input

第一行包含两个整数N和M,分别表示矩形纸片的长和宽。接下来的N行包含一个N * M的01矩阵,表示这张矩形纸片的颜色(0表示白色,1表示黑色)。

Output

包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。

Sample Input

3 3
1 0 1
0 1 0
1 0 0

Sample Output

4
6

HINT

对于20%的数据,N, M ≤ 80 对于40%的数据,N, M ≤ 400 对于100%的数据,N, M ≤ 2000

Source

[ Submit][ Status]



悬线法:首先在一行内找到最矮的,向2边扩展←可预处理

本题注意:预处理左右侧时时刻判定[连接性](能否连下去-10/01)

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#include<cmath>
#include<cctype>
#include<cassert>
#include<climits>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define RepD(i,n) for(int i=n;i>=0;i--)
#define MEM(a) memset(a,0,sizeof(a))
#define MEMI(a) memset(a,127,sizeof(a))
#define MEMi(a) memset(a,128,sizeof(a))
#define INF (2139062143)
#define F (1000000009)
#define MAXN (2000+10)
typedef long long ll;
int n,m,f[MAXN][MAXN]={0},h[MAXN][MAXN]={0},l[MAXN][MAXN]={0},r[MAXN][MAXN]={0};
int b[MAXN][MAXN];
int main()
{
// freopen("bzoj1057.in","r",stdin);
   scanf("%d%d",&n,&m);
   For(i,n) For(j,m) scanf("%d",&b[i][j]);
   int ans1=1;
   For(i,n) For(j,m)
   {
      if (i==1||j==1) f[i][j]=1;
      else if (b[i-1][j]==b[i][j]||b[i][j-1]==b[i][j]) f[i][j]=1;
      else f[i][j]=min(f[i-1][j-1],min(f[i-1][j],f[i][j-1]))+1;
      ans1=max(ans1,f[i][j]);
   }
   cout<<ans1*ans1<<endl;
   For(i,n) For(j,m)
   {
      if (i==1) h[i][j]=1;
      else if (b[i-1][j]==b[i][j]) h[i][j]=1;
      else h[i][j]=h[i-1][j]+1;      
   } //悬线高度 
   //悬线左右侧 最远点 
   For(i,n) For(j,m)
   {
      if (j==1) l[i][j]=j;
      else if (h[i][j-1]<h[i][j]) l[i][j]=j;
      else if (b[i][j-1]==b[i][j]) l[i][j]=j;
      else {l[i][j]=l[i][j-1];while (l[i][j]>1&&h[i][l[i][j]-1]>=h[i][j]&&b[i][l[i][j]]!=b[i][l[i][j]-1]) l[i][j]=l[i][l[i][j]-1]; }
   }
   For(i,n) ForD(j,m)
   {
      if (j==m) r[i][j]=j;
      else if (h[i][j+1]<h[i][j]) r[i][j]=j;
      else if (b[i][j+1]==b[i][j]) r[i][j]=j;
      else {r[i][j]=r[i][j+1];while (r[i][j]<m&&h[i][r[i][j]+1]>=h[i][j]&&b[i][r[i][j]]!=b[i][r[i][j]+1]) r[i][j]=r[i][r[i][j]+1]; }
   }
   //最大子01矩阵 
   int ans2=0;
   For(i,n) For(j,m)
   {
      ans2=max(ans2,h[i][j]*(r[i][j]-l[i][j]+1));
      
   }
   cout<<ans2<<endl;
   #ifdef look
   /**/
   For(i,n)
   {
      For(j,m) cout<<h[i][j]<<' ';
      cout<<endl;
   }puts("");
   /**/
   /**/
   For(i,n)
   {
      For(j,m) cout<<l[i][j]<<' ';
      cout<<endl;
   }puts("");
   /**/
   /**/
   For(i,n)
   {
      For(j,m) cout<<r[i][j]<<' ';
      cout<<endl;
   }puts("");
   /**/
   /**/
   For(i,n)
   {
      For(j,m) cout<<h[i][j]*(r[i][j]-l[i][j]+1)<<' ';
      cout<<endl;
   }puts("");
   /**/
   #endif
   
   
// while(1);
   
   return 0;
}




  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值