BZOJ 1797([Ahoi2009]Mincut 最小割-最小割的可行边与必行边)

Description

A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路。设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站,如果切断这条道路,需要代价ci。现在B国想找出一个路径切断方案,使中转站s不能到达中转站t,并且切断路径的代价之和最小。 小可可一眼就看出,这是一个求最小割的问题。但爱思考的小可可并不局限于此。现在他对每条单向道路提出两个问题: 问题一:是否存在一个最小代价路径切断方案,其中该道路被切断? 问题二:是否对任何一个最小代价路径切断方案,都有该道路被切断? 现在请你回答这两个问题。
Input

第一行有4个正整数,依次为N,M,s和t。第2行到第(M+1)行每行3个正 整数v,u,c表示v中转站到u中转站之间有单向道路相连,单向道路的起点是v, 终点是u,切断它的代价是c(1≤c≤100000)。 注意:两个中转站之间可能有多条道路直接相连。 同一行相邻两数之间可能有一个或多个空格。
Output

对每条单向边,按输入顺序,依次输出一行,包含两个非0即1的整数,分 别表示对问题一和问题二的回答(其中输出1表示是,输出0表示否)。 同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。
Sample Input
6 7 1 6

1 2 3

1 3 2

2 4 4

2 5 1

3 5 5

4 6 2

5 6 3

Sample Output
1 0

1 0

0 0

1 0

0 0

1 0

1 0

HINT

设第(i+1)行输入的边为i号边,那么{1,2},{6,7},{2,4,6}是仅有的三个最小代价切割方案。它们的并是{1,2,4,6,7},交是 。 【数据规模和约定】 测试数据规模如下表所示 数据编号 N M 数据编号 N M 1 10 50 6 1000 20000 2 20 200 7 1000 40000 3 200 2000 8 2000 50000 4 200 2000 9 3000 60000 5 1000 20000 10 4000 60000

2015.4.16新加数据一组,可能会卡掉从前可以过的程序。

同之前的那篇题解
最小割的可行边的充分必要条件:网络流中满流且残余网络中边的2点不在一个scc中。
必行边:是可行边,且残余网络与s,t点分别在一个联通块

#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <string>
#include <vector>
#include <map>
#include <functional>
#include <cstdlib>
#include <queue>
#include <stack>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=Pre[x];p;p=Next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=Next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define pb push_back
#define mp make_pair 
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
typedef long long ll;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+llabs(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int read()
{
    int x=0,f=1; char ch=getchar();
    while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
    while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
    return x*f;
} 
#define MAXN (4000*2+100)
#define MAXM (60000*2+10)
int n,k;
class tar{
public:
    vi G[MAXN],G2[MAXN];
    int pre[MAXN],lowlink[MAXN],sccno[MAXN],dfs_clock,scc_cnt;
    stack<int> S; 
    void dfs(int u) {
        pre[u] = lowlink[u] = ++dfs_clock;
        S.push(u);
        int sz=SI(G[u]);
        Rep(i,sz) {
            int v=G[u][i];
            if (!pre[v]) {
                dfs(v);
                lowlink[u]=min(lowlink[u],lowlink[v]);
            } else if (!sccno[v]) {
                lowlink[u]=min(lowlink[u],pre[v]);
            } 
        } 
        if (lowlink[u]==pre[u]) {
            scc_cnt++;  
            while(1) {
                int x=S.top();S.pop();
                sccno[x]=scc_cnt;
                if (x==u) break;  
            } 
        }       
    } 
    void find_scc(int n) {
        dfs_clock = scc_cnt = 0;
        MEM(sccno) 
        MEM(pre)
        Rep(i,n) if (!pre[i]) dfs(i);
    }
    void mem(int n) {
        Rep(i,n) G[i].clear(),G2[i].clear();
    }
}S2;
class Max_flow  //dinic+当前弧优化   
{    
public:    
    int n,t;    
    int q[MAXN];    
    ll weight[MAXM];
    int edge[MAXM],Next[MAXM],Pre[MAXN],size;    
    void addedge(int u,int v,int w)      
    {      
        edge[++size]=v;      
        weight[size]=w;      
        Next[size]=Pre[u];      
        Pre[u]=size;      
    }      
    void addedge2(int u,int v,int w){addedge(u,v,w),addedge(v,u,0);}     
    bool b[MAXN];    
    ll d[MAXN];    
    bool SPFA(int s,int t)      
    {      
        MEMI(d)
        MEM(b)    
        d[q[1]=s]=0;b[s]=1;      
        int head=1,tail=1;      
        while (head<=tail)      
        {      
            int now=q[head++];      
            Forp(now)      
            {      
                int &v=edge[p];      
                if (weight[p]&&!b[v])      
                {      
                    d[v]=d[now]+1;      
                    b[v]=1,q[++tail]=v;      
                }      
            }          
        }      
        return b[t];      
    }     
    int iter[MAXN];  
    int dfs(int x,ll f)  
    {  
        if (x==t) return f;  
        Forpiter(x)  
        {  
            int v=edge[p];  
            if (weight[p]&&d[x]<d[v])  
            {  
                  int nowflow=dfs(v,min(weight[p],f));  
                  if (nowflow)  
                  {  
                    weight[p]-=nowflow;  
                    weight[p^1]+=nowflow;  
                    return nowflow;  
                  }  
            }  
        }  
        return 0;  
    }  
    ll max_flow(int s,int t)  
    {  
        (*this).t=t;
        ll flow=0;  
        while(SPFA(s,t))  
        {  
            For(i,n) iter[i]=Pre[i];  
            ll f;  
            while (f=dfs(s,INF))  
                flow+=f;   
        }  
        return flow;  
    }   
    void mem(int n)    
    {    
        (*this).n=n;  
        size=1;    
        MEM(Pre)   
    }
    void init(int n) {
        For(i,n) {
            Forp(i) {
                int v=edge[p];  
                // cout<<i<<' '<<v<<' '<<weight[p]<<endl;
                if (!weight[p]) {
                    // if (i<=n1&&v>n1&&v<=n1+m1) {
                    //     ::b[i][v-n1]=1;
                    //     // cout<<i<<' '<<v-n1<<endl;
                    // }
                }
                else S2.G[i-1].pb(v-1),S2.G2[i-1].pb(p);
            }
        }
    }   
}S;  
struct {
    int u,v;
}e[MAXM];
int main() {
        int n,m,s,t;
        n=read(),m=read(),s=read(),t=read();
        S.mem(n);
        For(i,m) {
            int u=read(),v=read(),w=read();
            S.addedge2(u,v,w);
            e[i].u=u,e[i].v=v;
        }
        ll p=S.max_flow(s,t);
        S.init(n);

        S2.find_scc(n);
        s--,t--;
        For(i,m) {
            e[i].u--,e[i].v--;
            if (S.weight[i*2]) puts("0 0");
            else if (S2.sccno[e[i].u]==S2.sccno[s] && S2.sccno[e[i].v]==S2.sccno[t]) puts("1 1");
            else if (S2.sccno[e[i].u]!=S2.sccno[e[i].v]) puts("1 0");
            else puts("0 0");
        }
        S2.mem(n);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值