BZOJ 4031([HEOI2015]小Z的房间-矩阵树定理+辗转相除)

矩阵树定理,注意gauss消元辗转相除的写法

#include<bits/stdc++.h> 
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000000)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
                        For(j,m-1) cout<<a[i][j]<<' ';\
                        cout<<a[i][m]<<endl; \
                        } 
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
    int x=0,f=1; char ch=getchar();
    while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
    while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
    return x*f;
} 
#define MAXN (3000)
ll a[MAXN][MAXN];
ll det(int n) {
    bool f=0;
    For(i,n) {
        int k=i;
        Fork(j,i,n) if (abs(a[j][i])>abs(a[k][i])) {k=j;break;}
        For(j,n) swap(a[i][j],a[k][j]);
        if (i^k) f^=1;
        Fork(j,i+1,n) {
            while(a[j][i]) {
                ll t=a[j][i]/a[i][i];
                For(k,n) {
                    a[j][k]+=F-t*a[i][k]%F;
                    a[j][k]%=F;
                }
                if (!a[j][i]) break;
                f^=1;
                For(k,n) swap(a[j][k],a[i][k]); 
            }
        }
    }
    ll r=1;
    For(i,n) r=r*a[i][i]%F;
    if (f) r=F-r;
    return r%F;
}
int id[MAXN][MAXN],cnt=0;
int main()
{
//  freopen("bzoj4031.in","r",stdin);
//  freopen(".out","w",stdout);

    int n=read(),m=read();
    char s[MAXN][MAXN];
    int cnt=0;
    For(i,n) {
        scanf("%s",s[i]+1);
        For(j,m) if (s[i][j]=='.') id[i][j]=++cnt;
    }
    For(i,n) For(j,m) if (s[i][j]=='.'){
        if (i>1) {
            int x=i,y=j,nx=i-1,ny=j;
            if (s[nx][ny]=='.') {
                int u=id[x][y],v=id[nx][ny];
                a[u][v]--; a[v][u]--;
                a[u][u]++; a[v][v]++;
            }
        }
        if (j>1) {
            int x=i,y=j,nx=i,ny=j-1;
            if (s[nx][ny]=='.') {
                int u=id[x][y],v=id[nx][ny];
                a[u][v]--; a[v][u]--;
                a[u][u]++; a[v][v]++;
            }

        }

    }
    printf("%lld\n",det(cnt-1));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值