危险路径(启发式合并+mst)

39人阅读 评论(0) 收藏 举报
分类:

给定一个 n 个点 m 条边的连通无向图,其中点从 1 到 n 标号,而每条边有一个危险值。
对于任意一条路径,定义路径上危险值的最大值为这条路径的危险值。

对于任意不同的两点 u 和 v,定义 d(u, v) 为所有从 u 到 v 的路径的危险值最小值。
fu=u!=vd(u,v)
i=1n(if(i))

最小生成树+启发合并
对集合维护集合里的值和真值的差。

#include<bits/stdc++.h> 
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
                        For(j,m-1) cout<<a[i][j]<<' ';\
                        cout<<a[i][m]<<endl; \
                        } 
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
    int x=0,f=1; char ch=getchar();
    while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
    while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
    return x*f;
} 
int T,n,m;
#define MAXN (112345)
class bingchaji
{
public:
    int father[MAXN],n,cnt,sz[MAXN];
    vector<pair<ull,ull> > g[MAXN];
    ull sum[MAXN];
    void mem(int _n)
    {
        n=cnt=_n;
        For(i,n) {
            father[i]=i,sz[i]=1;
            sum[i]=0; g[i].resize(0);
            g[i].pb(mp(i,0));
        }
    }
    int getfather(int x) 
    {
        if (father[x]==x) return x;

        return father[x]=getfather(father[x]);
    }
    void unite(int x,int y)
    {
        x=getfather(x);
        y=getfather(y);
        if (x^y) {
            --cnt;
            father[x]=y;
            sz[y]+=sz[x];
        }
    }
    bool same(int x,int y)
    {
        return getfather(x)==getfather(y);
    }
}S;
#define MAXM (312345)
struct edge{
    int u,v;
    ull w;
    friend bool operator<(edge a,edge b){
        return a.w<b.w;
    }
}e[MAXM];

int main()
{
//  freopen("g.in","r",stdin);
//  freopen(".out","w",stdout);
    int T=read();
    For(kcase,T) {
        n=read(),m=read();
        For(i,m) {
            e[i].u=read();
            e[i].v=read();
            e[i].w=read();
        }
        sort(e+1,e+1+m);
        S.mem(n);
        For(i,m) {
            {
                int t1=e[i].u,t2=e[i].v;
                ull v=e[i].w;
                t1=S.getfather(t1);
                t2=S.getfather(t2);
                if(t1==t2) continue;

                if (S.sz[t1]>S.sz[t2]) swap(t1,t2);
                S.sum[t1]+=S.sz[t2]*v;
                S.sum[t2]+=S.sz[t1]*v;
                S.sz[t2]+=S.sz[t1];
                for(pair<ull,ull> p:S.g[t1] ) {
                    S.g[t2].pb(mp(p.fi,p.se+S.sum[t1]-S.sum[t2]));
                }
                S.father[t1]=t2;                            

            }
        }
        ull ret=0;
        int u=S.getfather(1);
        ull t=S.sum[u];
        for(auto p:S.g[u]) {
            ret^=1ULL * p.fi*(p.se+t);
        }
        printf("Case #%d: ",kcase);
        cout<<ret<<endl;
    }
    return 0;
}
查看评论

最小的路径和

/** 给你一个二维数组,二维数组中的每个数都是正数,要求从左上 角走到右下角,每一步只能向右或者向下。沿途经过的数字要累 加起来。返回最小的路径和。 */ public class C02_...
  • qq_38238041
  • qq_38238041
  • 2018-03-22 21:57:52
  • 29

LintCode -- 最小路径和

LintCode -- minimum-path-sum(最小路径和) 原题链接:http://www.lintcode.com/zh-cn/problem/minimum-path-sum/ ...
  • chan15
  • chan15
  • 2015-10-05 15:21:58
  • 1514

危险路径(启发式合并+mst)

给定一个 n 个点 m 条边的连通无向图,其中点从 1 到 n 标号,而每条边有一个危险值。 对于任意一条路径,定义路径上危险值的最大值为这条路径的危险值。对于任意不同的两点 u 和 v,定义 d(...
  • nike0good
  • nike0good
  • 2018-04-14 23:29:05
  • 39

路径规划学习入门

运动规划简介 随机路图法PRM 是基于图搜索的方法,随机路图(Probabilistic Road Maps,PRM)就是在规划空间内随机选取N个节点,之后连接各节点,并去除与障碍物接触的连线,由此...
  • dazhushenxu
  • dazhushenxu
  • 2017-09-04 09:04:01
  • 8857

【算法】树上启发式合并算法

树上启发式合并算法是启发式合并算法在树上的应用。下面我直接通过一个例子来讲解这个算法。         例:给定一棵有根树,树的结点编号为1~n,根结点为结点1。结点i有颜色col[i],其中1≤co...
  • ZJZNKU
  • ZJZNKU
  • 2017-03-25 17:22:50
  • 1408

学习总结:Dsu on tree 树上启发式合并

(RT,这只是一篇小小的总结,以便将来的回顾,并不详细讲)以前也学习过启发式合并,大概就是像树形dp一样在dfs上,将儿子的信息向父亲转移,容器是map,将儿子的信息边转移边更新答案,转移之后便将儿子...
  • nanhan27
  • nanhan27
  • 2017-03-22 19:09:24
  • 790

浅谈路径规划算法

原文地址:http://theory.stanford.edu/~amitp/GameProgramming/ 1 导言 1.1 算法 1.2 Dijkstra算法与最佳优先搜索 1....
  • chauncygu
  • chauncygu
  • 2017-09-19 16:32:09
  • 11487

风险应对视角下不确定需求定位_<em>路径</em>鲁棒优化研究-<em>CSDN</em>下载

风险应对视角下不确定需求定位_<em>路径</em>鲁棒优化研究,风险...(为了良好下载体验及使用,每位用户24小时之内最多可...您因违反<em>CSDN</em>下载频道规则而被锁定帐户,如有疑问,请...
  • 2018年04月05日 00:00

关于treap启发式合并的一点脑洞(以bzoj2809为例)

首先我直到bzoj2809正解应该是可并堆,之所以写treap启发式合并单纯只是因为这个脑洞… 首先我们有两个treap,分别是 A 和 B ,它们的节点数分别为 n 和 m (n...
  • scpointer
  • scpointer
  • 2017-01-30 22:28:45
  • 393

【[Offer收割]编程练习赛23 D】【最小生成树+set的启发式合并】观光旅行

题目4 : 观光旅行 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi去H市旅游,H 市有 n 个旅游景点,有 m...
  • snowy_smile
  • snowy_smile
  • 2017-08-20 14:43:55
  • 483
    个人资料
    持之以恒
    等级:
    访问量: 101万+
    积分: 2万+
    排名: 492
    文章分类
    最新评论